EE40 Spring 2008 Homework 1 Solution

Anantharam, Venkat

February 1, 2008

NOTE: EACH PROBLEM IS WORTH 10 POINTS

Problem 1 Solution (P 1.21)

(a) Since we have an active reference configuration, we compute the power as

$$
p=-v_{a} \cdot i_{a}=30 W
$$

Since this is positive, power is being absorbed by the element.
(b) Since we have an active reference configuration, we compute the power as

$$
p=v_{b} \cdot i_{b}=30 W
$$

Since this is positive, power is being absorbed by the element.
(c) We compute the power as

$$
\begin{gathered}
p=v_{D E} \cdot i_{D E}=-60 \mathrm{~W} \text { OR } \\
p=-v_{D E} \cdot i_{E D}=-60 \mathrm{~W}
\end{gathered}
$$

Since this is negative, power is being delivered by the element.

Problem 2 Solution

The figure from the problem is shown below

The solution is shown below

A node is a point at which two or more current elements are joined together. All points connected by ideal conductors are considered to be a single node. There are 6 nodes in this circuit as indicated in the figure above.

Problem 3 Solution

- Writing KCL at the node where B,D,E and G connect, we have

$$
i_{g}+i_{e}=i_{b}+i_{d}
$$

Hence

$$
\begin{aligned}
i_{d} & =i_{g}+i_{e}-i_{b} \\
& =4-2-2 \\
& =0 \mathrm{~A}
\end{aligned}
$$

- Writing KCL at the node where F,G and H connect, we have

$$
\begin{aligned}
i_{f} & =i_{g}+i_{h} \\
& =4-2 \\
& =2 A
\end{aligned}
$$

- Writing KCL at the node where A, D and F connect, we have

$$
i_{a}+i_{d}=i_{f}
$$

Hence

$$
\begin{aligned}
i_{a} & =i_{f}-i_{d} \\
& =2-0 \\
& =2 A
\end{aligned}
$$

- Finally, we have

$$
i_{c}+i_{h}=i_{e}
$$

So

$$
\begin{aligned}
i_{c} & =i_{e}-i_{h} \\
& =-2+2 \\
& =0 A
\end{aligned}
$$

Problem 4 Solutions (P 1.41)

(a) A and B are in parallel
(b) By KVL, $v_{a}+v_{b}=0 V$
(c) By KVL, $v_{b}=-v_{a}=-2 V$

Also by KVL in the loop defined by B,C and

$$
v_{b}+v_{d}+v_{c}=0
$$

Hence, $v_{c}=-v_{b}-v_{d}=2+5=7 V$

Problem 5 Solutions

- By KVL in the loop defined by A,D and B

$$
v_{b}+v_{a}-v_{d}=0
$$

Hence, $v_{b}=v_{d}-v_{a}=5-3=2 V$

- By KVL in the loop defined by D,F and G

$$
v_{d}+v_{f}-v_{g}=0
$$

Hence, $v_{g}=v_{d}+v_{f}=5-1=4 V$

- By KVL in the loop defined by E,C,A and D

$$
v_{e}+v_{c}+v_{a}-v_{d}=0
$$

Hence, $v_{e}=v_{d}-v_{c}-v_{a}=5+3-3=5 V$

- Finally, by KVL in the loop defined by C,A,F and H

$$
v_{c}+v_{a}+v_{f}+v_{h}=0
$$

Hence, $v_{h}=-v_{c}-v_{a}-v_{f}=3-3+1=1 V$

Problem 6 Solution

Let R denote the resistance, v the voltage across it and i the current through it in the passive reference configuration. Refer to the figure shown below.

We have $v=50 \mathrm{~V}$ and the power delivered is $P=200 \mathrm{~W}$. Hence, $i=\frac{200}{50}=4 \mathrm{~A}$. Therefore, $R=\frac{v}{i}=\frac{50}{4}=12.5 \Omega$.
If the voltage is increased to $v=75 V$, then the current increases to $i=\frac{75}{R}=$ $\frac{75}{12.5}=6 \mathrm{~A}$. That is, the current increases by 50%.
The power delivered increases to $75 * 6=450 W$ (increases by 125%).

Problem 7 Solution

The instantaneous power delivered to the resistance is:

$$
p(t)=\frac{v^{2}(t)}{R}=\frac{(10 \sin (4 \pi t))^{2}}{10}=10 \sin ^{2}(4 \pi t)
$$

To find the total energy between $t=0$ and $t=10 s$, we need to compute the integral as shown below:

$$
\int_{0}^{10} 10 \sin ^{2}(4 \pi t) d t
$$

Now, $\int_{0}^{1} \sin ^{2}(4 \pi t) d t=5$, the energy is $50 J$
Problem 8 Solution (\mathbf{P} 1.65)
The total resistance across the terminals of the voltage source can be determined by a series-parallel combination because $\frac{1}{10}+\frac{1}{15}=\frac{25}{150}=\frac{1}{6}$. Refer to figure below.

The voltage across the terminals of the current source is therefore $6 I_{x} V$ (assuming I_{x} is given in amps). By the voltage divider formula, given the voltage drop of 15 V across the 5Ω resistor we have $15=\frac{5}{5+10} 6 I_{x}=\frac{30 I_{x}}{15}=2 I_{x}$.
Thus $I_{x}=7.5 \mathrm{~A}$

Problem 9 Solution (P 1.67)

First, we have $i_{0}=\sqrt{\frac{P_{0}}{8}}=1 \mathrm{~A}$
Applying Ohm's law and KVL to the right hand loop, we have

$$
1000 v_{i n}=2 i_{0}+8 i_{0}
$$

This means $v_{i n}=10 \mathrm{mV}$. Then, $i_{i n}=\frac{v_{i n}}{10^{4}}=1 \mu \mathrm{~A}$
Finally, we have $V_{x}=5000 i_{i n}+10000 i_{i n}=15 \mathrm{mV}$.

Problem 10 Solution (P $1.71+$ Power Calculation)
Refer to the figure below

Applying KVL around the periphery of the circuit, we have $-18+v_{x}+2 v_{x}=0$ which yields $v_{x}=6 \mathrm{~V}$. Then we have $v_{12}=2 v_{x}=12 \mathrm{~V}$. Using Ohm's law we obtain $i_{12}=\frac{v_{12}}{12}=1 A$ and $i_{x}=\frac{v_{x}}{2}=3 A$. Then KCL applied to the node at the top of the 12Ω resistor gives $i_{x}=i_{12}+i_{y}$ which yields $i_{y}=2 A$.
With the sign conventions as shown in the figure, the power delivered to the 18 V source is:

$$
-(18)\left(i_{y}+\frac{v_{x}}{6}\right)=-18 \cdot 3=-54 W
$$

The power delivered to the 2Ω resistance is

$$
v_{x}\left(i_{y}+\frac{v_{x}}{6}\right)=6 \cdot 3=18 W
$$

The power delivered to the 12Ω resistance is

$$
2 v_{x} \frac{v_{x}}{6}=12 \mathrm{~W}
$$

The power delivered to the controlled voltage source is

$$
2 v_{x} i_{y}=12 \cdot 2=24 W
$$

Note that $-54+18+12+24=0 W$ as expected.

