EE40 Spring 2008 Homework 2 Solutions

1) a)

The circuit can be redrawn as

And then the portion:

can be replaced by a $(2+4) / / 6=6 / / 6=3 \Omega$ resistor as shown in the drawing. Then we get, by similar reasoning $(3+3) / / 3=6 / / 3=2 \Omega$ for the larger parallel block.
Therefore the total resistance is $\mathrm{R}_{\mathrm{eq}}=2+2+8+2+2=16 \Omega$.
b)

Shorting c to d means no voltage drop between those two points, so no current on the 8 or 2Ω resistors, and we can just ignore them. Hence the total resistance is $\mathrm{R}_{\mathrm{eq}}=2+2+0+2=$ 6Ω.
2) Hambley P 2.17:

Combining the 20Ω resistor with the 30Ω gives $20 * 30 / 50=60 / 5=12 \Omega$,

then we note as in the drawing above that $60 / /(8+12)=60 / / 20=120 / 8=15$, for a total resistance of $7+15=22 \Omega$.
3) Hambley P 2.24

Label the blacked nodes in the text by d,a,b,c going counterclockwise from top left. The total current flowing into and out of the parallel combination of the 6Ω and 12Ω resistors on the right is 2 A . By the current divider formula, $\mathrm{i}_{2}=2 *(1 / 12) /(1 / 12+1 / 6)=$ 2/3A.
The total current flowing into and out of the parallel combination of the 12Ω and 24Ω resistors on the left is 2 A . By the current divider formula, $i_{1}=\frac{1 / 12}{1 / 12+1 / 24} 2=\frac{4}{3} \mathrm{~A}$.
Thus

$$
\begin{gathered}
v_{\mathrm{a}}-\mathrm{v}_{\mathrm{b}}=12 * i_{2}=8 \mathrm{~V} \\
v_{\mathrm{b}}-v_{\mathrm{c}}=8 * 2=16 \mathrm{~V} \\
v_{\mathrm{c}}-v_{\mathrm{d}}=12 * i_{1}=16 \mathrm{~V}
\end{gathered}
$$

By KVL, $v=v_{\mathrm{a}}-v_{\mathrm{d}}=8+16+16=40 \mathrm{~V}$
4) Hambley P 2.32

With the switch open, by the voltage division formula $v_{2}=10 * \mathrm{R}_{2} /\left(\mathrm{R}_{2}+6\right) \mathrm{V}$. Since $v_{2}=5 \mathrm{~V}$, we have $5\left(\mathrm{R}_{2}+6\right)=10 \mathrm{R}_{2}$
so $R_{2}=6 \Omega$.
With the switch closed, by the voltage division formula,
$\mathrm{v} 2=\left(\mathrm{R}_{2} / / \mathrm{R}_{\mathrm{L}}\right) /\left(\mathrm{R}_{2} / / \mathrm{R}_{\mathrm{L}}+6\right) * 10 \mathrm{~V}$.
Since $\mathrm{v}_{2}=4 \mathrm{~V}$, we have
$4 *\left(\mathrm{R}_{2} / / \mathrm{R}_{\mathrm{L}}+6\right)=10^{*} \mathrm{R}_{2} / / \mathrm{R}_{\mathrm{L}}$
so $\mathrm{R}_{2} / / \mathrm{R}_{\mathrm{L}}=4 \Omega$.
We use that $1 /\left(R_{2} / / R_{L}\right)=1 / R_{L}+1 / R_{2}$ to find that $1 / R_{L}=1 /\left(R_{2} / / R_{L}\right)-1 / R_{2}=1 / 4-1 / 6=$ $1 / 12 \Omega$,
so $R_{L}=12 \Omega$.
5) Hambley P 2.49

KCL at node 1 gives

$$
\left(v_{1}\right) / 5+\left(v_{1}-v_{2}\right) / 15+\left(v_{1}-v_{3}\right) / 15=0
$$

KCL at node 2 gives

$$
\left(v_{2}-v_{1}\right) / 15+\left(v_{2}-v_{3}\right) / 15=4
$$

KCL at node 3 gives

$$
\left(v_{3}\right) / 25+\left(v_{3}-v_{2}\right) / 15+\left(v_{3}-v_{1}\right) / 15=0
$$

Multiplying each equation through by 15 and rearranging gives

$$
\begin{gathered}
5 v_{1}-v_{2}-v_{3}=0 \\
-v_{1}+2 v_{2}-v_{3}=60 \\
+v_{1}+v_{2}-(13 / 5) v_{3}=0
\end{gathered}
$$

Adding eq2 and eq3 gives
$3 v_{2}-(18 / 5) v_{3}=60$
Adding 5*eq2+eq1 gives
$9 v_{2}-6 v_{3}=300$
Adding -3*eq4+eq5 gives
$(24 / 5) v_{3}=300$
i.e. $v_{3}=25 \mathrm{~V}$.

Substituting into either eq4 or eq5 gives

$$
v_{2}=50 \mathrm{~V} .
$$

Substituting into any one of eqs 1,2,or 3 gives $v_{1}=15 \mathrm{~V}$.
6) Hambley P 2.52 modified:

The graph of the circuit is

with the reference node indicated.
We may choose the tree (this is not unique)

A supernode is indicated.
There are two unknowns, v_{a} and v_{b}. The voltage at the other node in the supernode containing node b is $v_{\mathrm{b}}+20$.
Writing KCL at node a gives

$$
2=v_{\mathrm{a}} / 2+\left(v_{\mathrm{a}}-\left(v_{\mathrm{b}}+20\right)\right) / 5
$$

Writing KCL at the supernode gives

$$
1=\left(v_{\mathrm{b}}+20\right) / 10+\left(v_{\mathrm{b}}+20-v_{\mathrm{a}}\right) / 5 .
$$

Multiplying both eqs by 10 and rearranging,
$7 v_{\mathrm{a}}-2 v_{\mathrm{b}}=60$
$-2 v_{\mathrm{a}}+3 v_{\mathrm{b}}=-50$.
$3 *$ eq1 $1+2 *$ eq2 gives
$17 v_{\mathrm{a}}=80$
Hence
$v_{\mathrm{a}}=80 / 17$.

Substituting into either equation gives $v_{\mathrm{b}}=-230 / 17 \mathrm{~V}$.
Finally, $\mathrm{i}_{1}=\left(v_{\mathrm{b}}+20\right) / 10=11 / 17 \mathrm{~A}$.
7)

There was a typo in the problem statement. The dependent current source was intended to be a dependent voltage source. As the problem is currently written, it could be solved by inspection by using KCL at each node without any reference to the voltages. However, for demonstration purposes we will solve it with Node Voltage Analysis. Following the solution to the written problem is an optional section, on how to solve the intended problem.

First we name the current from the controlled current source as if it is a known current source. Later we will substitute for its defining relation. There will be three equations in three variables, followed by the substitution at the end.

Writing KCL at node 1

$$
\left(v_{1}-v_{3}\right) / 5+3+1=0
$$

Writing KCL at node 2 gives

$$
1+\left(v_{3}-v_{2}\right) / 10=v_{2} / 20 .
$$

Writing KCL at the node between 1 and 2 (call it v_{3}) gives

$$
5 i_{\mathrm{x}}+\left(v_{1}-v_{3}\right) / 5+3+\left(v_{2}-v_{3}\right) / 10=0
$$

And finally, we have the relation that

$$
i_{x}=\left(v_{3}-v_{2}\right) / 10 .
$$

Plugging the last equation into the third and multiplying through by 10 gives:

$$
v_{1}+2 v_{2}-v_{3}=15 .
$$

Together with the first two equations, which can be rewritten as

$$
\begin{aligned}
& v_{1}+v_{3}=20 \\
& 3 v_{2}-2 v_{3}=20,
\end{aligned}
$$

We can solve the three equations to find that

$$
v_{1}=7.5 \mathrm{~V}, v_{2}=25 \mathrm{~V} \text {, and } v_{3}=27.5 \mathrm{~V} \text {. }
$$

Then, referring back to either equation involving i_{x}, we find that $i_{\mathrm{x}}=1 / 4$.

OPTIONAL: if you were to do the intended problem, with a dependent voltage source instead of the dependent current source, shown below, then you would have the following solution (go ahead and try it!):

We treat the controlled voltage source as if it were an independent voltage source with unknown voltage V_{c}. Later we will get an additional equation for V_{c} by using the defining relation of the controlled voltage source.

Since the voltage source is connected to the reference node we may treat the nonreference node of the voltage source as part of a reference super node. Thus (besides V_{c}) there are two variables, v_{1} and v_{2}.

Writing KCL at node 1 gives

$$
4=\left(\mathrm{V}_{\mathrm{c}}-v_{1}\right) / 5
$$

Writing KCL at node 2 gives

$$
1+\left(\mathrm{V}_{\mathrm{c}}-v_{2}\right) / 10=v_{2} / 20 .
$$

Writing KCL at node 3 gives
Multiplying eq 1 by 5 and eq 2 by 20 and rearranging

$$
\begin{aligned}
& v_{1}=V_{\mathrm{c}}-20 \\
& 3 v_{2}=2 \mathrm{~V}_{\mathrm{c}}+20 .
\end{aligned}
$$

Now, if V_{c} were known, this actually solves for v_{1} and v_{2}. However, because V_{C} is coming from a controlled source we are not done yet. We have to use its defining relation to write

$$
\mathrm{V}_{\mathrm{c}=5} 5 *\left(\mathrm{~V}_{\mathrm{C}}-v_{2}\right) / 10,
$$

i.e.

$$
\mathrm{V}_{\mathrm{c}=-} \mathrm{V}_{2}
$$

Substituting this in the second eq gives

$$
v_{2}=4 \mathrm{~V}
$$

and so

$$
V_{c}=-4 V
$$

and so

$$
v_{1}=-24 \mathrm{~V} .
$$

8) Hambley 2.64

Label the meshes:

Since $i_{3}=2$ it is not a variable.
Writing KVL around the first mesh:

$$
24 *\left(i_{2}-i_{3}\right)+12 * i_{1}=0
$$

Writing KVL around the second mesh:

$$
12 * i_{2}+6 *\left(i_{2}-i_{3}\right)=0
$$

Substituting for i_{3} and rearranging

$$
36 * i_{1}=48
$$

$$
18 * i_{2}=12
$$

Namely
$\mathrm{i}_{1}=4 / 3 \mathrm{~A}$
$\mathrm{i}_{2}=2 / 3 \mathrm{~A}$
This is what we found in homework problem 3.
9) Hambley 2.72 modified:

To be turned in with next week's problem set.
10) Hambley 2.90

Zeroing the 1 A source gives

By the current division principle, the contribution of the 2 A source to i_{1} is $2 *(-1 / 30) /(1 / 30+1 / 5)=-2 / 7 \mathrm{~A}$.

Zeroing the 2A source gives

By the current division principle, the contribution of the 1 A source to i_{1} is $1 *(1 / 15) /(1 / 15+1 / 20)=4 / 7 \mathrm{~A}$.

Hence $\mathrm{i}_{1}=4 / 7-2 / 7=2 / 7 \mathrm{~A}$.

