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Referenced problems from Hambley, 4th edition.

1. P3.39

The current through the capacitor is

i(t) = C
dvC(t)

dt
= 10−7(−103 sin(100t)) = −10−4 sin(100t) A

(where we assume that vC(t) is given in volts).

The voltage across the resistor is therefore

vR(t) = Ri(t) = −10−3 sin(100t)V.

The concept of 1% accuracy used in the problem statement is not very
precise because the voltages are time varying. Interpreting this question as
asking whether the peak of the parasitic resistance voltage term is within
1% of the peak voltage across the capacitor, the question may be viewed
as asking if

10−3 < (0.01)103.

This is of course true.

Suppose now that
vC(t) = 0.1 cos(107t)

(again assumed to be given in volts). Then we have

i(t) = C
dvC(t)

dt
= 10−7(−106 sin(107t)) = −0.1 sin(107t) A

and
vR(t) = − sin(107t) V.

In this case the peak of the parasitic resistance voltage is actually 10
times the peak voltage across the capacitor, so it becomes very important
to include it in the model.
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The message of this problem is that the higher the frequency of the sig-
nals the more a capacitor approximates a short circuit (which makes it
increasingly inappropriate to neglect parasitic resistances in series).

2. P3.68

The current through the inductor (and resistor) is given as

i(t) = 0.1 cos(105t) A.

Therefore we can find the voltage across the inductor as

vL = L
di(t)
dt

= 10 ∗ 10−3(−0.1105 sin(105t)) = −100 sin(105t)V.

The voltage across the resistor is

vR(t) = Ri(t) = 1 ∗ 0.1 cos(105t) V,

and the total voltage is

v(t) = vL(t) + vR(t) = −100 sin(105t) + 0.1 cos(105t) V

The concept of 1% accuracy used in the problem statement is not very
precise because the voltages are time varying. Interpreting this question as
asking whether the peak of the parasitic resistance voltage term is within
1% of the peak voltage across the capacitor, the question may be viewed
as asking if

0.1 < (0.01)100.

This is of course true.

Suppose now that
i(t) = 0.1 cos(10t)

(again assumed to be given in Amps). Then we have

vL = L
di(t)
dt

= 10 ∗ 10−3(−0.1 ∗ 10 sin(10t)) = −10−2 sin(105t) V,

while vR(t) = Ri(t) = 0.1 cos(10t).

In this case the peak of the parasitic resistance voltage is actually 10
times the peak voltage across the inductor, so it becomes very important
to include it in the model.

The message of this problem is that the lower the frequency of the sig-
nals the more an inductor approximates a short circuit (which makes it
increasingly inappropriate to neglect parasitic resistances in series).
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3. P3.71

i(t) = C
dvC(t)

dt
= 5 ∗ 10−4 ∗ 1000 ∗ 10 cos(1000t) = 5 cos(1000t)

vL(t) = L
diL(t)

dt
= −2 ∗ 10−3 ∗ 1000 ∗ 5 sin(1000t) = −10 sin(1000t)

v(t) = vC(t) + vL(t) = 10 sin(1000t)− 10 sin(1000t) = 0

This is an idealized LC oscillator with no active source, where energy is
sloshing back and forth between the capacitor and the inductor.

4. P4.4
Writing KVL after line 0 we have

RC
dvC(t)

dt
+ vC(t) = Vs for t ≥ 0.

The solution comes as a sum of two parts. One is the particular solution.
This is any solution of the differential equation for t ≥ 0 where we
do not worry about matching the initial conditions. Thus the notion of
”particular solution” is not unique.

The second part is the complementary solution. We get this by finding
a solution of the homogenous equation

RC
dvC(t)

dt
+ vC(t) = 0

corresponding to an initial condition which is the sum of the true initial
condition and a part which compensates for the initial condition in the
particular solution.

For instance, in this case we could observe that

vpart
C (t) = Vsfor t ≥ 0

is a valid choice of particular solution and it satisfies the differential equa-
tion. However, its initial value is Vs so to find the corresponding comple-
mentary solution we would need to find the solution to the homogeneous
equation from the initial condition (VC(0−)− Vs) which is

V comp
C (t) = (vC(0−)− Vs)e−t/RC , t ≥ 0

Alternately, we might have observed that

vpart
C (t) = Vs − Vse

−t/RC , t ≥ 0

is also a valid particular solution. In this case there is no need to com-
pensate for the initial conditions of this solution in the complementary
solution. The corresponding complementary solution would here be

V comp
C (t) = vC(0−)e−t/RC , t ≥ 0

3



In either case, the overall solution is

vC(t) = vpart
C (t) + vcomp

C (t) = vs + (vC(0−)− Vs)e−t/RC for t ≥ 0

Substituting the given values, we have

RC = 105 ∗ 10−8 = 10−3seconds

and
vC(t) = 100− 150e−1000tvolts, t ≥ 0

where t is measured in seconds.

5. 4.9
From KVL just before the switch opens we know that

vc(0−) = v(0−) = 0

This is because the voltage across a short circuit must be zero.

We are interested in v(t) for t ≥ 0, ie after the switch opens. Writing
Is for the current source (for clarity) this is governed by the differential
equation

C
dv(t)
dt

+
v(t)
R

= Is, t ≥ 0

which we get by writing KCL after the switch opens.

The solution in general is the sum of two parts. The first part is the
particular solution, which in this case we can take as

vpart(t) = RIs −RIse
−t/RC , t ≥ 0

The second part is the complementary solutions which for this differential
equation would in general be, for the given particular solution,

vcomp(t) = v(0−)e−t/RC , t ≥ 0

but in this example we know from the conditions before the switch opened
that v(0−) = 0, as we have

vcomp(t) = 0, t ≥ 0

The solution is therefore

v(t) = vpart(t) + vcomp(t) = RIs −RIse
−t/RC , t ≥ 0

Substituting the given values, we have

RC = 104 ∗ 10−6 = 10−2secs

and
v(t) = 10− 10e−100t , t ≥ 0

where t is measured in seconds.
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6. P4.17

(a) Writing KVL immediately after the switch closes gives

v1(0+) = 105i(0+) + v2(0+).

Since the voltage across a capacitor cannot jump we have

v1(0+) = v1(0−) = 100V

and
v2(0+) = 1v2(0−) = 0V.

Substituting, we get
105i(0+) = 100

i(0+) = 10−3amps.

(b) For times t ≥ 0 we may write KVL to get

v1(t) = Ri(t) + v2(t).

Taking the derivative, we have

dv1(t)
dt

− dv2(t)
dt

−R
di(t)
dt

= 0.

But we also have

−i(t) = C1
dv1(t)

dt

and

i(t) = C2
dv2(t)

dt
.

Hence, the differential equation can be written as

R
di(t)
dt

+ (
1
C1

+
1
C2

)i(t) = 0.

This is a homogeneous differential equation corresponding to the ab-
sence of sources. Note that the capacitors in series appear to have
been replaced, in effect, by a single capacitor of value 1/( 1

C1
+ 1

C2
).

(c) The time constant of the circuit would be RC where

1
C

=
1
C1

+
1
C2

.

Substituting the given values, we have

C = 0.5µF

RC = 105 ∗ 0.5 ∗ 10−6 = 0.05secs.
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(d) Since the governing differential equation is homogeneous the par-
ticular solution is zero for all t ≥ 0. We need only consider the
complementary solution, which is

i(t) = i(0+)e−t/RC for t ≥ 0.

Substituting the values calculated earlier, we get

i(t) = 10−3e−20tfor t ≥ 0

where i(t) is in amps and t is in seconds.

(e) From the defining equation for the capacitors C2 we may write, for
t ≥ 0,

v2(t) = v2(0−) +
1
C2

∫ t

0

i(s)ds

Substituting, this gives

v2(t) = 106

∫ t

0

10−3e−20sds =
103

20
(1− e−20t) = 50(1− e−20t)volts

This gives
lim

t→∞
v2(t) = 50volts

as the limiting value of the voltage across the capacitor C2.
Note that

lim
t→∞

i(t) = 0

Thus in the limit as t becomes very large the voltages across the
capacitor C1 and the capacitor C2 should be the same. This can be
verified by writing

v1(t) = v1(0−)− 1
C1

∫ t

0

i(s)ds

and substituting to get

v1(t) = 100−106

∫ t

0

10−3e−20sds = 100−103

20
(1−e−20t) = 50+50e−20tvolts.

So
lim

t→∞
v1(t) = 50volts

Note that you could also have solved this part of the problem by
using the principle of conservation energy. The initial energy stored
in the capacitor C2 is zero. The total energy dissipated in the resistor
over all t ≥ 0 is

∫ ∞

0

Ri2(t)dt =
∫ ∞

0

105 ∗ 10−6e−40tdt =
10−1
40

= 1/400Joules.
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Thus in the limit as t →∞,

1
200

− 1
400

=
1

400
J

must remain stored in the capacitors. Since each of them must have
the same voltage across them and they are both of the same capac-
itance, each must be storing 1/800J in the limit as t → ∞. Solving
for v in the equation

Cv2/2 = 1/800

with C = 10−6Farads gives

v = 50Volts

as expected.

Yet another approach would be to say that the positive charge stored on
the upper plates of the capacitors can’t cross to the bottom plates. There-
fore Q1(t) + Q2(t) = Qtot(0−). Further, we have a resistor, and so energy
is dissipated until the system settles in the minimum energy configura-
tion. So, minimizing the energy, which is 1

2C1Q
2
1 + 1

2C2Q
2
2, subject to the

charge conservation constraint, we get Q1 = Q2 = Qtot(0−)/2. Therefore
Q1 = 50V which is what we found before.

7. P4.37

L

vL(t)

 

Figure 1: Circuit for P4.37

For times t ≤ 0 applying KVL gives

i(t) = 20/20 = 1A.

After the switch closes (i.e. for t ≥ 0) we have the circuit where we
have also indicated our choice of reference for the voltage vL(t) across the
inductor and for the current iL(t) through the inductor.
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Figure 2: Plot of i(t) for P4.37

Note that
lim

t→∞
i(t) = 2A.

The current through an inductor cannot change suddenly. Thus we have

iL(0+) = iL(0−) = 0.

Writing KCL, we have

i(t) = iL(t) + vL(t)/10 for t ≥ 0

(Here we also implicitly used one KVL equation). Writing the other KVL
equation, we have

20 = 10i(t) + vL(t) for t ≥ 0

Substituting for i(t) from the preceding equation, we get

20 = 10iL(t) + 2vL(t) for t ≥ 0
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Since we also have

vL(t) = L
diL(t)

dt
=

diL(t)
dt

we finally get
diL(t)

dt
+ 5iL(t) = 10 for t ≥ 0

as the differential equation characterizing the circuit.

This equation has the particular solution

ipart
L (t) = 2− 2e−5t , t ≥ 0

and the complementary solution in general looks like

icomp
L (t) = iL(0−)e−5t for t ≥ 0.

Here we haveiL(0−) = 0. Hence the solution to the differential equation
is

iL(t) = ipart
L (t) + icomp

L (t) = 2− 2e−5t for t ≥ 0.

From this we get

vL(t) =
diL(t)

dt
= 10e−5t for t ≥ 0

which gives

i(t) = iL(t) + vL(t)/10 = 2− 2e−5t + e−5t = 2− e−5t for t ≥ 0.

We plot i(t) in Fig. 2:

7. P4.45 The system is described by the differential equation

RC
dvC(t)

dt
= vC(t) = v(t) for t ≥ 0.

As suggested, since v(t) = t for t ≥ 0, we look for a particular solution of
the form

vcp(t) = A + Bt for t ≥ 0.

Substituting this into the differential equation gives

RCB + A + Bt = t, t ≥ 0.

This can be satisfied by choosing

B = 1 and A = −RC.

We therefore work with the particular solution

vpart
C (t) = −RC + t, t ≥ 0.
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Note that this equals −RC at time 0.

Thus the corresponding complementary solution has to compensate for
this initial condition where the true initial condition is given as vc(0) = 0,
the complementary solution would be the solution of the homogeneous
equation

RC
dvC(t)

dt
+ vC(t) = 0 , t ≥ 0,

from the initial condition RC, i.e.

vcomp
C (t) = RCe−t/RC , t ≥ 0.

The overall solution is then

vC(t) = vpart
C (t) + vcomp

C (t) = t−RC(1− e−t/RC) , t ≥ 0.

A sketch of this solution vc(t) is given in Fig. 3.

8. P4.50
By writing KVL after the switch closes we get the differential equation
describing the current as

2
diL(t)

dt
+ iL(t) = 5e−t sin(t) , t ≥ 0

where we used the given values L = 2H and R = 1Ω.

We seek a particular solution of the form

Ae−t sin(t) + Be−t cos(t) for t ≥ 0.

Substituting this into the equation gives

2(−Ae−t sin(t)+Ae−t cos(t)−Be−t cos(t)−Be−t sin(t))+(Ae−t sin(t)+Be−t cos(t).

This is satisfied by the choices A = −1 and B = −2. We therefore take
as particular solution

ipart
L (t) = −e−t sin(t)− 2e−t cos(t), t ≥ 0.

Note that this choice has ipart
L (0) = −2. The corresponding complementary

solution is the solution of the homogenous equation

2
diL(t)

dt
+ iL(t) = 0

from the initial condition 2, because the true initial condition must be
iL(0−) = 0 (prior to the switch closing there cannot be any current flowing
through the inductor).

Thus we have
icomp
L (t) = 2e−t/2, t ≥ 0.

The overall solution is therefore

iL(t) = ipart
L (t) + icomp

L (t) = 2e−t/2 − e−t sin(t)− 2e−t cos(t), t ≥ 0.
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line v
c
(t) = t

line v
c
(t) =t−RC

that the solution has as the
asymptote as t −−> ∞

v
c
(t)=t−RC(1−e−t/RC), t ≥ 0

Figure 3: Plot of vC(t) for P4.45

9. P4.22

We are interested in a DC steady-state analysis. In DC steady-state the
inductor acts as a short circuit and the capacitor acts as an open circuit.
Thus

i2 = 100/103 = 0.1A (1)
i3 = 0A (2)
i4 = 100/103 = 0.1A (3)

and i1 = i2 + i3 + i4 = 0.2A.
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