EE 40: Introduction to Microelectronic Circuits Spring 2008: HW 5 (due $3 / 7,5 \mathrm{pm}$)

Venkat Anantharam

March 1, 2008

Referenced problems from Hambley, 4th edition.

1. P4.27
2. P4.62 (NOTE: The is a typo in part (b) of problem P4.61, which should say $v^{\prime}(0+)=10^{9} \frac{\mathrm{~V}}{\mathrm{~s}}$.)
3. P4.66
4. P5.16
5. Suppose that $v_{1}(t)=80 \cos (\omega t)$ and $v_{2}(t)=60 \sin (\omega t)$. Use phasors to reduce the sum $v_{s}(t)=$ $v_{1}(t)+v_{2}(t)$ to a single term of the form $V_{m} \cos (\omega t+\theta)$. Draw a phasor diagram, showing $\mathbf{V}_{\mathbf{1}}, \mathbf{V}_{\mathbf{2}}$, and $\mathbf{V}_{\mathbf{s}}$. State the phase relationships between each pair of these phasors.
6. Find an expression for $v(t)$ of the form $V_{m} \cos (\omega t+\theta)$ when $v(t)=v_{1}(t)+v_{2}(t)+v_{3}(t)+v_{4}(t)$ with

$$
\begin{aligned}
& v_{1}(t)=20 \sin (\omega t) \\
& v_{2}(t)=20 \cos \left(\omega t+\frac{\pi}{6}\right) \\
& v_{3}(t)=20 \sin \left(\omega t+\frac{\pi}{3}\right) \\
& v_{4}(t)=-10 \cos (\omega t)
\end{aligned}
$$

Use phasors.
7. P5.33
8. Find the complex impedance in polar form of the network shown in Figure 1 for $\omega=1000 \frac{1}{s}, \omega=2000 \frac{1}{s}$, and $\omega=4000 \frac{1}{s}$.

Figure 1: Circuit 1
9. P5. 47
10. P5.50

