
1. P4.27
2. P4.62 *(NOTE: There is a typo in part (b) of problem P4.61, which should say \(v'(0+) = 10^{9} \text{V} \).)*
3. P4.66
4. P5.16
5. Suppose that \(v_1(t) = 80 \cos(\omega t) \) and \(v_2(t) = 60 \sin(\omega t) \). Use phasors to reduce the sum \(v_s(t) = v_1(t) + v_2(t) \) to a single term of the form \(V_m \cos(\omega t + \theta) \). Draw a phasor diagram, showing \(V_1 \), \(V_2 \), and \(V_s \). State the phase relationships between each pair of these phasors.
6. Find an expression for \(v(t) \) of the form \(V_m \cos(\omega t + \theta) \) when \(v(t) = v_1(t) + v_2(t) + v_3(t) + v_4(t) \) with
 \[
 \begin{align*}
 v_1(t) &= 20 \sin(\omega t) \\
 v_2(t) &= 20 \cos(\omega t + \frac{\pi}{6}) \\
 v_3(t) &= 20 \sin(\omega t + \frac{\pi}{3}) \\
 v_4(t) &= -10 \cos(\omega t)
 \end{align*}

 Use phasors.
7. P5.33
8. Find the complex impedance in polar form of the network shown in Figure 1 for \(\omega = 1000 \frac{1}{\text{s}} \), \(\omega = 2000 \frac{1}{\text{s}} \), and \(\omega = 4000 \frac{1}{\text{s}} \).

\[
\begin{align*}
200\mu\text{H} \\
100\Omega \\
20\mu\text{F}
\end{align*}
\]

Figure 1: Circuit 1