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Referenced problems from Hambley, 4th edition.

1. P5.56

Note that we have not been asked to find the voltage at the node between
the 5Ω resistor and the 15jΩ inductor. We may therefore replace the series
connection by a single impedance of the value 5 + 15jΩ before starting.

KCL at node 1 gives

1
10

V1 +
1

5 + j15
(V1 −V2) = 1

KCL at node 2 gives

− 1
j10

V2 +
1

5 + j15
(V2 −V1) = 1ejπ/6

Rewriting, we see that

(
1
10

+
1

5 + 15j
)V1 − (

1
5 + 15j

)V2 = 1 (1)

(− 1
5 + 15j

)V1 + (
1
10

+
1

5 + 15j
)V2 = eπj/6 (2)

We choose to manipulate these two equations so that when we add them
together the V1 will cancel, giving a single equation in V1.

Equation 1 can be multiplied by 2∗(5+j15) to eliminate the denominators,
yielding

3(1 + j)V1 − 2V2 = 10 + j30.

Multiplying this by 1− j (to get a real coefficient for V1), we get

6V1 − 2(1− j)V2 = 40 + 20j (3)
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.

Working with eq. 2 now, we first multiply through by 2∗ (5+ j15) to clear
the denominators and obtain

−2V1 + (j − 1)V2 = 10(1 + j3)(
√

3
3

+
j

2
) = 5(

√
3− 3 + (3

√
3 + 1)j). (4)

We can multiply this by 3, in order to add it to eq. 3. The sum of
3 ∗ eq. 4 + eq. 3 is

5(j − 1)V2 = (15
√

3− 5) + (45
√

3 + 35)j,

or, dividing through by 5,

(j − 1)V2 = (3
√

3− 1) + (9
√

3 + 7)j. (5)

We can multiply each side by j + 1 to obtain

2V2 = (6
√

3 + 8)− (12
√

3 + 6)j,

or
V2 = (3

√
3 + 4)− (6

√
3 + 3)j

.

It remains to find
V2

. We plug eq.5 into eq. 4, getting

−2V1 + (3
√

3− 1) + (9
√

3 + 7)j = (5
√

3− 15) + (15
√

3 + 5)j,

which we can solve for

V1 = (7−
√

3) + (1− 3
√

3)j.

Therefore our final answer is

V2 = (3
√

3 + 4)− (6
√

3 + 3)j = 9.1962− 13.3923i = 16.24576 − 55.5253◦ (6)

V1 = (7−
√

3) + (1− 3
√

3)j = 5.2679− 4.1962i = 55.52536 − 38.5394 (7)

2. P5.59 The KVL equations are

10I1 + j20(I1 − I2) = 0
j20(I2 − I1) + 10 + 15(I2 − I3) = 0

15(I3 − I2) + (−j5)I3 = 0

We simplify each equation individually to write:
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(1 + j2)I1 = j2I2 (8)
−j20I1 + (j20 + 15)I2 − 15I3 = −10 (9)

10I3 = (9 + j3)I2 (10)

Plugging eq. 8 and eq. 10 into eq. 9, we have

−4j(2j + 4)I2 + (j20 + 15)I2 − 3
2
(9 + 3j)I2 = −10

which simplifies to

I2 =
−10

9.5− 0.5j
= −1.0497− 0.0552i = −1.05126 3.0102◦.

Plugging in, we find

I1 = −0.8177− j0.4641 = −0.94026 29.5778◦

I3 = −0.9282− j0.3646 = −0.99726 21.4451◦

3. P5.70

Assuming a passive reference configuration, the current

I =
V
Z

=
1500

√
26 30◦

3−+j40
=

1500
√

26 30◦

506 53.13◦
= 30

√
26 − 23.13◦

Since the current lags the voltage we would call the load inductive.

The root mean square values of the voltage and the current are

Vrms = 1500
Irms = 30

Also, the angle by which the current lags the voltage is

θ = 23.13◦

The power factor is

cos θ = cos(23.13◦) = .9196

If the underlying frequency is ω the power delivered to the load is a time-
varying function given by (see eqn(5.58))

p(t) =
VmIm

2
cos(θ) [1 + cos(2ωt)] +

VmIm

2
sin(θ) sin(2ωt)
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where Vm = 1500
√

2 and Im = 30
√

2 are the peak values of the voltage
and the current respectively. Substituting, using sin(23.13◦) = 0.3928, we
have

p(t) = 41382 [1 + cos(2ωt)] + 17676 sin(2ωt) watts

The average power delivered to the load is

P =
VmIm

2
cos(θ) = VrmsIrms cos θ = 41382 watts.

The reactive power delivered to the load is

Q = VrmsIrms sin θ = 17676 VAR

(note that in your book the units are not watts, by convention, to dis-
tinguish reactive power from real power, but you can use watts if you
like).

Since the power angle is positive (voltage leads the current) the reactive
power is positive.

The apparent power delivered to the load is
√

P 2 + Q2 = (VrmsIrms) = 45000 VA

(here also the units in your book are not watts, but you can use watts if
you like).

Note that the peak of the instantaneous power delivered to the load is
actually

P +
√

P 2 + Q2 = 86382 watts.

4. P5.76

We can use KVL to solve for the current from

240
√

26 50◦ = I(1 + j2) + 220
√

26 30◦

218.17 + j260.00 = I(1 + j2) + 269.44 + j155.56

I =
−51.27 + j104.44

1 + j2
=

116.356 116.15◦

2.2366 63.44◦
= 52.036 52.71◦.

The power angle for source A considered in a passive reference is

50◦ − (−127.29◦) = 177.29◦

Since this is not in the range (−90◦, 90◦), the source is delivering power.

THe power angle for source B considered in a passive reference is

30◦ − (52.71◦) = −22.71◦

4



Since this is in the range (−90◦, 90◦), the source is having power delivered
to it.

(The above statements apply to real power. Reactive power is also being
exchanged between the sources and the inductor).

5. P5.91 We first find the open circuit voltage (phasor) across the terminals
a and b.

KCL tells us that
Ix = 0.5Ix

This implies that Ix = 0.

From this it follows that the open circuit voltage across a and b, ie Zth,
equals −36 30◦, ie 3 6 − 150◦.

To find Zth, the Thevenin impedance, we zero out the independent source
and apply an external voltage (phasor) Vext across terminals a and b. We
then determine Iext. We will have

Zth =
Vext

Iext

See the figure (Fig. 1).

Vext

ext
x

Ix

 
 

Figure 1:

KCL tells us that
Iext + Ix = 0.5Ix

Hence
Iext = −0.5Ix

KVL tells us that
Ix(5 + j5) + Vext = 0

Hence
Ix = − Vext

5 + j5
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Zth =
Vext

Iext
= −2

Vext

Ix
= 10 + j10

The Thevenin equivalent circuit is (see Fig.2)

O

 Figure 2:

We can determine the Norton equivalent circuit from this. However, let
us instead directly determine IN by determining the short circuit current,
see the figure (Fig.3):

x

Ix
O

IN

 
 

Figure 3:

KCL tells us that IN = 0.5Ix.

KVL tells us that 2 6 30◦ + (5 + j5)Ix = 0.

Hence,

IN =
−36 30◦

10 + j10

This is consistent with what one would have gotten by direct transforma-
tion of the Thevenin equivalent into the Norton equivalent.
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6. P6.16

A (linear) filter whose input is a sinusoid of a given frequency produces an
output which is also a sinusoid at the same frequency. From the linearity,
the frequencies at which we can determine the value of the filter and the
corresponding magnitude and phase may be listed as below:

f |H(f)| 6 H(f)
0 3 0◦

103 2 30◦

1500 1 90◦

2000 0 irrelevant

7. P6.25

We assume that the filter is as in Fig. 6.7. The transfer function is

H(f) =
1

1 + j(f/fB)

where fB = 1
2πRC is the half-power frequency. Here we are given that

fB = 500 Hz.

The input signal has components at DC (f = 0), at f = 500 and at
f = 15 ∗ 103. The magnitude and phase of the transfer function at these
frequencies can be listed as

f H(f) |H(f)| 6 H(f)
0 1 1 0◦

500 1
1+j

1√
2

−45◦

15 ∗ 103 1
1+j30

1√
901

− arctan(30) = −88.0908◦

Because the filter is linear, the corresponding output voltage is

vout(t) = 4 +
√

2 sin(1000ıt− 15◦) +
5√
901

cos(30 ∗ 103πt− 88.0908◦).

Note that the component of the input at the high frequency 15 ∗ 103 has
been significantly attenuated relative to the other frequencies and incurs
a phase shift of approximately −90◦.

8. P6.29

We seek a filter with transfer function

H(f) =
1

1 + j( f
fB

)

with the property that

|H(104)| = 1
100
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ie
1√

1 + ( f
fB

)2
=

1
100

Working out the algebra gives

fB =
104

104 − 1
≈ 1√

101
.

Note that 1 kHz is still well above the break frequencies of ≈ 100 Hz so
signals at this frequency is also substantially attenuated by this filter.

9. (a) P6.54
We write

H(f) = 10
1

1− j(f/500)

The magnitude and phase Bode plots of the constant transfer func-
tion 10 can be found by writing, for H1(f) = 10,

|H1(f)| = 10

|H1(f)|dB = 20log10 = 20

because the logarithm is in base 10 and 6 H1(t) = 0◦. The magnitude
and phase plots for

H(f) = 10
1

1− j(f/500)

can be found by first identifying the break frequency

fB = 500 Hz

and then appealing to the discussion in the text.
The overall plots are the sums of the respective plots for H1(f) and
H2(f). We draw these as (see Figs. 4&5)
Note that the phase plot is the negative of that of Fig. 6.16 because
the phase of H2(f) increase to 90◦ as f → ∞. The asymptotes
are used as an aid for plotting the Bode plots, which are the curved
graphs. The value of the magnitude Bode plot at the break frequency
is roughly 3 dB below its peak, which in this case is 17 dB.

(b) P6.55
We have

H(f) =
1− j(f/100)
1 + j(f/100)

Since |H(f)| = 1 for all f (such a filter is called an all-pass filter), we
have

|H(f)|dB = 20 log |H(f)| = 0
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Figure 4: Magnitude plot of H(f) for problem 6.54

Thus the magnitude Bode plot is (see Fig. 6)
For the phase Bode plot we notice that both the numerator H1(f) =
1− j(f/100) and the denominator H1(f) = 1 + j(f/100) have break
frequency 100 Hz.
The corresponding phase plots are (see Figs. 7& 8)
We add these to get the Bode phase plot of H(f) (see Fig. 9)
Again, the asymptotes are used only as an aid in sketching the phase
Bode plot, which is the curved line.

10. P6.69

(a) By the voltage divider formula,

H(f) =
Vout

Vin
=

R2

R2 + R1/j2πfC
R1+1/j2πfC

=
R2 + R1R2j2πfC

R2 + R1 + j2πfCR1R2

(Here we are assuming a sinusoidal input voltage at frequency f, in
which case the output will also be sinusoidal at frequency f, and we
are computing a ratio of phasors).

(b) See Fig. 10.

(c) As f → 0 the transfer function H(f) approaches R2
R1+R2

. This is
consistent with the voltage divider formula when the capacitor is
replaced by an open circuit.
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Figure 5: Phase plot of H(f) for problem 6.54

(d) As f → ∞ the transfer function H(f) approaches 1. This is consis-
tent with what the transfer function would be if the capacitor were
replaced with a short circuit.
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Figure 6: Magnitude plot of H(f) for problem 6.55
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Figure 7: Phase plot of H2(f) for problem 6.55

11



10
0

10
1

10
2

10
3

10
4

−90

−45

0

Frequency (logscale)

∠
 H

2(f
) 

(d
eg

)

Figure 8: Phase plot of H2(f) for problem 6.55
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Figure 9: Phase plot of H(f) is the sum of phase plots for H1(f) and H2(f) for
problem 6.55

12



10
1

10
2

10
3

10
4

10
5

10
6

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

f (logscale)

|H
(f

)|
db

Figure 10: Magnitude plot of H(f) for problem 6.69
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