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Referenced problems from Hambley, 4th edition.

1. P14.11
First check for negative feedback: If vo ↑, then v2 ↑, hence v1 − v2 ↓, hence vo ↓.
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Figure 1: Circuit Analyzed in P14.11

Next, using the summing point constraint and v1 = 0, we get v2 = 0. Since

v3 = v2 + i2R = i2R

and
v3 = i3R

we get i2 = i3. Hence,
i4 = i2 + i3 = 2i2

We also have
vin = i4(2R) + i3R = (2i2)(2R) + i2R = 5i2R

Hence
i2 =

vin

5R

and
v3 =

vin

5
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We have i1 + i2 = 0, because no current is drawn at the op-amp’s − input.
Hence,

vo = v2 + (15R)i1

= −(15R)i2

= −3vin

This establishes that the closed loop voltage gain is -3.
To complete the analysis of the circuit, not that

iL =
vo

RL

=
−3vin

RL

and

io = i1 + iL

= −i2 + iL

= −
vin

5R
−

vin

RL

2. P14.16
First we check for negative feedback: vL ↑→ v2 ↑→ v1 − v2 ↓→ vL ↓.
We have the circuit in Figure 2. Using the summing point constraint gives
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Figure 2: Circuit of P14.16

v2 = v1 = 0

The second equation is because the ’+’ input of the op-amp is connected to ground. This gives

2 = ix103

Hence,
ix = 2 ∗ 10−3A

Also,
vL = −ix2kΩ = −4V

We also have
iL =

vL

1kΩ
= −4mA
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Figure 3: KCL for Op-Amp

and
io = iL − ix = −6mA

The currents into the “closed surface” are displayed in Figure 3.
Note that there are currents from the power supply connections, as shown. This is why KCL continues

to hold.
0 + 0 + IDD − ISS − io = 0

In most of the examples we are considering, however, neither IDD nor ISS are known.

3. P14.23

(a) First, check for negative feedback. This is subtle, because we have to check for the effects of
perturbations in both op-amps outputs. The way to handle this is to observe first that any
perturbation in the output of the bottom op-amp is stabilized by the negative feedback around it.
Hence we can think of the − input of the bottom op-amps as being tied to v2 when considering
perturbations of the output of the top op-amp and now conclude that such perturbations are also
stabilized because of the negative feedback around the top op-amp.
The summing point constraint at the op-amp A gives

v2A = v1A = v1

Thus
voA = ioRL + v2A = ioRL + v1

The summing point constraint at the op-amp B gives

v2B = v1B = v2

Since io = i1, we have

v1 = v2A = v2B + i1R

= v2B + ioR

= v2 + ioR

Hence, we have

io =
v1 − v2

R

Finally
voB = v2B = v2
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Figure 4: Circuit Analyzed in P14.23 (a)

and
i2 = −i1

Solving the circuit, we note that the current delivered to the load is

iL =
v1 − v2

R

irrespective of the value of the load, RL. Thus, across its terminals, the load sees the circuit (i.e.
the portion of the circuit ofther than the load) as an ideal current source delivering this current
(see Figure 5).
For that reason, the output impedance is ∞.

v1−v2

R
RL

io

Figure 5: Ideal Current Source

In particular, there is no Thévenin equivalent circuit from the point of view of the load and the
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circuit makes no sense when the load is replace by an open circuit. This is a constrast to several
of the other circuits we studied, which make no sense when the load is replaced by a short circuit.
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Figure 6: Circuit Analyzed in P14.23 (b)

(b) Upfront, we recognize that we have negative feedback at both op-amps. The op-amp on the
bottom is a unity gain circuit and the upper op-amp is in a configuration where a perturbation of
the output has a stronger impact on the negative input as on the positive input.
We first consider the loop containing the voltage source, the two adjacent resistors and the upper
op-amp. As, by the summing point constraint, the voltage between the two input terminals of the
op-amp is zero, we get for i1

i1 =
vin

2R
(1)

Secondly, we consider the loop containing the input terminals of the upper op-amp, the resistor
between the input of the upper op-amp and its output, Rf , the unity gain buffer, and the resistor
at its output. We obtain the KVL equation

2i1R + ioRf = 0 (2)

where we used that there are no currents flowing into the inputs of the op-amps and that the
voltages of input and output of the unity gain buffer are equal.
We combine (1) and (2) to get the desired result for the output current.

io = −
vin

Rf

For the output resistance, we consider a circuit where the independent voltage source at the input
is zeroed and RL is replaced by a test voltage source with voltage vt (not depicted).
By our analysis, we know that the test current drawn from the test voltage source is

it = −io =
vin

Rf

=
0

Rf

= 0
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We get Rout by the formula

Rout =
vt

it
→ ∞

Therefore, as in (a), the output resistance is infinite.

4. P14.34
To check for negative feedback, we first observe that a perturbation at the output of the left op-amp
is stabilized because it results in negative feedback through the path leading through the right op-amp
(which dominates because of the gain of the right op-amp). Thus, we can thinkg of the ’+’ input of the
right op-amp as being fixed. Now, perturbations of the output of the right op-amp are only fed back
through the ’-’ input of the right op-amp (since the ’+’ input of that op-amp of that op-amp may be
considered fixed) so they are also stabilized.
We proceed to solve the circuit in Figure 7. We have
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Figure 7: Circuit P14.34

v21 = v11 = 0

by the summing point constraint at op-amp 1. We also have

i1 =
vin

R

For the other op-amp, we know that
v12 = v22

and also
i5 = i4 =

v22

R
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Hence
vo2 = 2v22

and

i3 = −
vo2

4R
= −

v22

2R

i2 = −
v12

4R
= −

v22

2R

Using KCL, we have

i1 = i2 + i3 = −
3v22

4R

Hence,

vin = −
3v22

4

Hence,

vo1 = v12 = v22 = −
4

3
vin

vo2 = v12 = 2v22 = −
8

3
vin

Thus, A1 = − 4

3
and A2 = − 8

3
.

5. P14.47

(a) From KVL, we have
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Figure 8: Circuit P14.47

vs = isRin + vo

and
isRo + AoLvin = vo

Also,
vi = isRin

Substituting, we get

vo = is(Ro + AoLRin)

=
vs − vo

Rin

(Ro + AoLRin) (3)

Hence,
vo

vs

=
Ro + AoLRin

Ro + (AoL + 1)Rin
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For the given parameter values, we get

vo

vs

=
25 + 1011

25 + 106 + 1011
= 0.99999

which is very close to 1 which is the result we get assuming an ideal op-amp.

(b) The input impedance is found by leaving the output terminals unloaded and considering the ratio
of the input voltage to the input current. The circuit drawn is already unloaded at the output so
the input impedance is

Zin =
vs

is
= Ro + (AOL + 1)Rin = 25 + 106 + 1011Ω

The ideal op-amp has infinite input impedance.

(c) The output impedance is found by shorting the input terminals (setting the input voltage to zero)
and applying a test circuit to the output terminals and determining the current drawn by the
given circuit at the output. Redrawing the circuit for this scenario gives the circuit in Figure 9.
Here, vt is a test voltage and Rt a test resistance. We have
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Figure 9: Calculating the Output Resistance

vi = −i2Rin

and
AOLvi + i1Ro = i2Rin

which gives

i1 =
Rin

Ro

(1 + AOL)i2

Hence,

it = i1 + i2 =
Rin

Ro

(1 + AOL) + 1)i2

Also

vt = itRt + i2Rin = it(Rt +
Rin

1 + Rin

Ro

(1 + AOL)
)

The output impedance is seen to equal

Zo =
RoRin

Ro + Rin(1 + AOL)

For an ideal op-amp, this would give zero as the open loop amplification is infinite.
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Figure 10: Output Voltage for Problem P14.75

6. P14.75 We know that this circuit functions as a differentiator and that

vo(t) = −RC
dvin

dt
(t)

= −10−3 dvin

dt
(t)

For the given input voltage, we obtain the output signal as given in Figure 10

7. P14.78 part (b) only
We first observe that negative feedback is present in the circuit.
Next, we analyze the circuit using phasor analysis at frequency ω. Redrawing the circuit, we have the
circuit in Figure 11.
We have V1 = 0 and, using the summing point constraint, we get
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Figure 11: Circuit P14.78 (b)

V1 = V2 = 0
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This gives

I1 =
Vin − V2

R
=

Vin

R

and, since the inputs of the op-amp draw no current, we have

I1 = I2

from which we get

Vo = −I

(

R +
1

jωC

)

= −Vin

(

1 +
1

jωRC

)

(4)

The ”voltage transfer ratio” (i.e. the transfer function) is

H(ω) = −
1 + jωRC

jωRC

The Body magnitude plot is the plot of 20 log10 |H(ω)| against log10 ω. As ω → 0 we have 20 log10 |H(ω)| →
20 log10 ω − 20 log10 RC.
As ω → ∞ we have |H(ω)| → 1 and so 20 log10 |H(ω)| → 0.
As ω → 0 we have 6 H(ω) → 90 deg.
As we have ω → ∞ we have 6 H(ω) → 0 deg.
The Bode plot is given in Figure 12. Not that the plot is normalized. ωb = 1

RC
.
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Figure 12: The Bode Plot of P14.78b

8. (a) P10.21 We have
10 = 2.5i + v
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Figure 13: Load Line (a) in given I-V Characteristic

where v is measured in V and i is measured in mA. Drawing the load line on the indicated I-V
characteristic of the diode gives the solution as given in Figure 13
The intersection of the two lines is the solution, we have approximately

v ≈ 1.85V i ≈ 3.25mA

(b) P10.23 We have

i =
ix

2
and

5 = ix + v

So
5 = 2i + v

where v is measure in V and i is measured in mA. Drawing the load line on the given I-V
characteristic of the diode (see Figure 14) gives the approximative solutions

v ≈ 1.7V i ≈ 1.7mA

9. P10.38 part (a) only
If v2 < 0 then diode D2 becomes on, shorting v2 to ground, which forces v2 = 0. Thus v2 ≥ 0. Similar
logic tells us that v1 ≤ 0 and v3 ≤ 0.
If v2 > 0 then diode D2 is off. Further, since v1 ≤ 0 and v3 ≤ 0 this would mean that positive current
flows from node 1 to node 2 and positive current flows from node 1 to node 3, which contradicts KCL.
Hence v2 = 0.
If v1 < 0 then D1 is off. Thus positive current flows from the +15V end to node 1 and positive current
flows from node 2 to node 1 (because v2 = 0). This contradicts KCL at node 1. Hence v1 = 0.
So we get the solution of the circuit as depicted in Figure 16. We have

v = 7.5V I = 0mA
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Figure 14: Load Line (b) in given I-V Characteristic
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Figure 15: Circuit P10.38 (a)

10. P14.12 We can verify that negative feedback is present by noting that a positive perturbation in vo

causes a decrease in iD and hence an increase at the − input of the op-amp, which acts to restore the
output from the perturbation.
We get the circuit in Figure 17. We have

v1 = v2 = 0

by the summing point constraint.
Hence,

i1 =
Vin

R

and so

iD = i1 =
Vin

R

This gives

vD = nVT ln
iD

IS

= nVT ln
Vin

RIS
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Figure 16: Solution Diode Circuit
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Figure 17: Diode Circuit with Op-Amp

Finally,

vo = −vD = nVT ln
RIS

Vin

Note that load line analysis was not needed. In general, it would be needed.
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