
EE 40: Introduction to Microelectronic Circuits

Spring 2008: HW 9

(due 4/28, 5 pm)

Venkat Anantharam

May 2, 2008

Referenced problems from Hambley, 4th edition.

1. P10.83
In this case we would say (roughly) that

VDQ = 5V IDQ = 3mA

(these are the quiescent point voltage and current respectively: note the notational conventions) and

vd(t) = 0.01V cos(ωt) id(t) = 0.2mA cos(ωt)

(these are the small signal ac voltage and current respectively: note the sign conventions) and

rd =
vd(t)

id(t)
= 50Ω

(this does not depend on t). Note that

vD(t) = VDQ + vd(t) iD(t) = IDQ + id(t)

2. Design a clipper circuit for a negative limit of −2.1V and a positive limit of 2.2V . The input voltage
is peak limited to ±5V .
You are allowed to use two diodes, two DC voltage sources and a resistor.
The maximum allowable current through each diode is 2.5mA and the threshold voltage of each diode
is 0.7V . Use an ideal voltage with threshold, ignoring breakdown.
Hint: See Figure 10.32 in textbook.

Following the hint, we consider a circuit like that in Figure 1. We would need to choose
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Figure 1: Clipper Circuit
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VA = 1.5V VB = 1.4V

in oder to get the desired negative and positive limits on the output voltage.
Sine the input voltage is peak-limited to ±5V , the maximum current through the diode DA is

5V − VA − 0.7

R
=

3.5V

R

The maximum current through the diode DB is at most

5V − VB − 0.7V

R
=

3.6V

R

To meet the required limit on the maximum current through the diodes we need

2.9V

R
≤ 2.5mA → R ≥ 1.16kΩ

3. A voltage source produces a periodic voltage vin(t) with period T = 2s with waveform as in Figure 2.
The positive peaks are of 6V and the negative peaks are at −2V . Not that
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Figure 2: Waveform Input Voltage

vin(t) = vd + va(t)

where vd = 2V and va(t) is a periodic signal with zero dc component.
It is desired to clamp vin(t) to a positive peak of 10V . You are allowed to use at most one of each of
the following:

(a) an ideal diode.

(b) an ideal Zener diode of arbitrary breakdown voltage.

(c) a resistor of size 1kΩ.

(d) a dc voltage source of arbitrary value.

(e) a capacitor of arbitrary value.
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You may assume implicitly that there is a small resistance in series with the voltage source vin which
is so small compared to 1kΩ that it can be neglected.
Design a clamp circuit to perform the desired task, giving some guidelines for the choice of values for
the elements (b), (d), and (e).
The circuit in Figure 3 will work. The value of the capacitor C should be such that C ≫ 1mF The circuit

−
+vin(t)
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Vc

−

C
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+
− 6V

+
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−

Figure 3: Clamper Circuit

works because in steady state, we have VC roughly constant at 4V . We then have vo(t) = vin(t) + 4V
which is thus the level-shifted version of vin(t) clamped to a positive peak of 10V .

4. In the circuit in Figure 4, the op-amp is assumed to be ideal. The circuit is called a precision rectifier.
We would need to choose
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Figure 4: Precision Rectifier

VA = 1.5V VB = 1.4V
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In order to get the desired negative and positive limits on the output voltage.
Since the input voltage is peak-limited to ±5V the maximum current through the diode DA is at most
Here ±V denotes the supply voltages. Take V = 12V . Note that vout(t) is defined at the − input of
the op-amp.

(a) Let vin(t) = Vm sin(ωt). Let Vm be significantly smaller than V , e.g. Vm = 6V . Determine vout(t)
under the assumption that the diode is ideal.
When vin(t) > 0V , in order to satisfy the summing point constraint the voltage at the − input
of the op-amp take on the same value. This is consistent with current flowing to ground from
the output of the op-amp, through the ideal diode (which will be in the short-circuit regime) and
through the resistors. Thus we have vout(t) = vin(t) when vin > 0V . Note that the output of the
op-amp is also at vout(t) in this case.
When vin < 0V , to satisfy the summing point constraint the voltage at the − input of the op-amp
would like to equal vin(t). However, this would entail current flowing through the diode in reverse
direction, which is not possible. Thus, the summing point constraint cannot be saitsfied. The
output of the op-amp will go to the negative supply voltage level, the diode will be an open circuit
in reverse bias, and the − input of the op-amp will be tied to ground.
Thus vout(t) = 0 when vin(t) > 0. We see that

vout =

{

Vm sin(ωt) if sin(ωt) > 0
0 otherwise

i.e. it is a half-wave rectified version of vin(t).

(b) Now, suppose that the diode is modelled as having a threshold voltage vth = 0.7V , being an ideal
short circuit at threshold voltage and an ideal open circuit below the threshold voltage. Again,
determine vout(t).
When vin(t) > 0, the same reasoning as in case (a) can be used to conclude that the summing
point constraint will be satisfied, giving vout(t) = vin(t). The difference her is that the output of
the op-amp will be at vout(t) = vin(t) + 0.7V .
When vin(t) < 0 the same reasoning as in case (a) can be used to conclude that the output of the
op-amp goes to the negative supply voltage and we have vout(t) = 0.
Thus, we again have that vout(t) is a half-wave rectified version of vin(t):

vout =

{

Vm sin(ωt) if sin(ωt) > 0
0 otherwise

(c) Why is the circuit called a precision rectifier? Note that even when the diode has a non-zero
threshold voltage, the signal vout(t) is a (nearly) perfectly rectified version of vin(t). There is no
dead zone due to the threshold voltage, unlike the rectifiers we considered earlier. This is why the
circuit is called a precision rectifier.

5. Consider the circuit in Figure 5. This circuit is known as an inverting precision rectifier.
Assume that the op-amp has supply voltages at ±12V and that vin(t) = 6V sin(ωt). Further assume

that the diode has a threshold voltage of 0.7V but is otherwise ideal.
Determine the voltage vout(t).
When vin(t) < 0, the − input of the op-amp gets tied to ground to satisfy the summing point constraint
and current flows into the output of the op-amp through the diode, which is in forward bias having
come from the input voltage source through the resistance. Thus, we have

vout(t) = 0 when vin(t) > 0

Note that the output of the op-amp is at −0.7V in this case.
When vin(t) < 0, the voltage of the − input of the op-amp would like to get tied to ground to satisfy
the summing point constraint. However, this would require current flow through the diode in reverse
bias, which is not possible. Thus the summing point constraint cannot be satisfied. The output of the
op-amp goes to the positive supply voltage, the diode is in reverse bias and we have vout(t) = vin(t)
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Figure 5: Inverting Precision Rectifier

because no current flows through the resistor.
We have

vout(t) =

{

Vm sin(ωt) if sin(ωt) < 0
0 otherwise

i.e. this is a half-wave rectifier that picks the negative excursions.

6. For this problem, note that the intrinsic carrier concentration of both electrons and holes in pure Si at
room temperature (≈ 300K) can be taken to be 1010cm−3, while that in pure Ge can be taken to be
2 ∗ 1013cm−3.
Identify the majority carrier and find the electron and hole concentrations at room temperature in the
following semiconductors.
Let ni denote the intrinsic carrier concentrations of both holes and electrons in each case. We use the
mass action law and the approximation that the majority carrier concentration equals the corresponding
net dopant concentration.

(a) Silicon doped with phosphorus at a doping concentration of 1016cm−3.
ni = 1010cm−3 for silicon. Phosphorus is a donor. The majority carrier concentration is electrons.
We may approximate the electron concentration n by the donor concentration n = Nd = 1016cm−3.
By the mass action law, we have

np = n2
i = 1020cm−6

where p denotes the concentration of holes.
We can solve to get p = 104cm−3

(b) Silicon simultaneously doped with arsenic at a concentration of 5 ∗ 1017cm−3 and with boron at a
concentration of 5.1 ∗ 1017cm−3.
Arsenic is a donor and boron is an acceptor. Since there is a higher concentration of boron than
arsenic, the boron compensates for arsenic. The majority carrier is holes. We may approximate
the hole concentration p by the excess of the acceptor concentration over donor concentration i.e.
by

p = Na − Nd = 5.1 ∗ 1017
− 5 ∗ 1017cm−3 = 1016cm−3

By the mass action law

n =
1020cm−6

p
= 104cm−3

(c) Germanium doped with boron at a concentration of 2 ∗ 1015cm−3.
For Germanium, we have ni = 2 ∗ 1013cm−3. Boron is an acceptor. We use the approximation
p ≈ Na = 2 ∗ 1015cm−3 and use the mass action law

np = n2
i = 4 ∗ 1026cm−6
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to get n = 2 ∗ 1011cm−3. The majority carrier is holes.

Consider a slat of silicon as shown in Figure 6. We focus on the x direction and assume that there is no

Figure 6: A slat of Silicon

variation in planes transverse to the x-direction.
Recall that Gauss’s law tells us that if there is a charge density profile ρ(x) in the slat (measured in C

cm3 )

then the associate electric field E measured in V
cm

and with reference as pointing in the x direction is given
by

dE

dx
(x) =

ρ(x)

ǫ

Here, ǫ is the permittivity of the material (here, the material is silicon, for which you can take ǫ = 11.7ǫ0,
where ǫ0, the permittivity of vacuum, is 8.85 ∗ 10−14 F

cm
).

Further, the associated electrostatic potential Φ(x), measure in V , satisfies

E(x) = −
dΦ

dx
(x)

which, together with Gauss’s law, gives Poisson’s equation

d2Φ

dx2
(x) = −

ρ(x)

ǫ

This determines potential differences: the actual value of the potential depends on a choice of reference.
This discussion is relevant to the following three problems.

7. Suppose the charge density in a slat of silicon (variations only in the x direction) is given by the graph
in Figure 7.

(a) Verify that the sample as a whole is electrically neutral.
We integrate the charge density along x:

∫ 800nm

x=−1200nm

ρ(ξ)dξ = 80 ∗ 2mC + 60 ∗ 1mC − 10 + 2mC − 50 ∗ 4mC

= 0

This shows that the sample as a whole is electrically neutral.

(b) Use Gauss’s law to determine the electric field as a function of x.
From

dE

dx
(x) =

ρ(x)

ǫ

we have that

E(x) =
1

ǫ

∫ x

−120nm

ρ(ξ)dξ + E(−120nm)

As the overall sample is electrically neutral, we can assume that E(−120nm) = 0.
Performing the integration yields

E(x) =































0 x ≤ −120nm
2(x+120nm)

ǫ
mC
cm3 −120nm < x ≤ −40nm

160nm
ǫ

mC
cm3 + x+40nm

ǫ
mC
cm3 −40nm < x ≤ 20nm

220nm
ǫ

mC
cm3 − x−20nm

ǫ
mC
cm3 20nm < x ≤ 30nm

200nm
ǫ

mC
cm3 −

4(x−30nm)
ǫ

mC
cm3 30nm < x ≤ 80nm

0 x > 80nm

Plugging in the numerical value of ǫ yields the result plotted in Figure 8.
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Figure 7: Charge Density Profile
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Figure 8: Profile of Electric Field
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(c) Explain why the direction of the electric field (which is determined by its sign) does not change
throughout the range −120nm < x < 80nm.
At any −120nm < x < 80nm, the net charge to the left is more positive than the net charge to
the right of x.

(d) Determine the potential Φ(x) as a function of x, assuming as a reference that Φ(0) = 0, thus
solving Poisson’s equation.
From

E(x) = −
dΦ

dx
(x)

we have that

Φ(x) = −

∫ ξ

−120nm

E(x) + Φ(−120nm)

From the assignment, we know that Φ(0) = 0. This can be used to find the unknown constant
Φ(−120nm). We integrate the electric field piecewise to get

Φ(x) =



































0 x ≤ −120nm

10.3mV − 1.867mV x
nm

− 9.66µV x2

nm2 −120nm < x ≤ −40nm

−1.932mV x
nm

− 4.83µV x2

nm2 −40nm < x ≤ 20nm

13.51mV − 2.511mV x
nm

− 9.65µV x2

nm2 20nm < x ≤ 30nm

4.82mV − 3.09mV x
nm

+ 19.3µV x2

nm2 30nm < x ≤ 80nm

−118.86mV x > 80nm

The potential Φ(x) is plotted in Figure 9.
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Figure 9: Potential

8. The electric field in a slat of silicon (variations only in the x direction) is given by the graph in Figure
10.

(a) Determine the associated charge density ρ(x). We know that

ρ(x) = ǫ
dE

dx
(x)
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Figure 10: Profile of Electric Field

Hence we can calculate the charge density by differentiating the given function of the electric field
and multiplying by ǫ.
We get

ρ(x) =







































0 x < 0nm

31.08 mC
cm3 0 ≤ x < 100nm

−15.54 mC
cm3 100nm ≤ x < 300nm

0 300nm ≤ x < 400nm

−5.18 mC
cm3 300nm ≤ x < 600nm

10.36 mC
cm3 600nm ≤ x < 700nm

0 700nm ≤ x

We get the result as plotted in Figure 11. Note that we assumed for the given plot that the
material was silicon, even though this was not given in the problem statement.

(b) Assuming as a reference that Φ(0) = 0, solve for the corresponding potential Φ(x).
As in the previous problem, we need to integrate the electric field function to get

Φ(x) =











































0 x < 0nm

−1.5µV x2

nm2 0 ≤ x < 100nm

22.5mV − 450µ x
nm

+ 750nV x2

nm2 100nm ≤ x < 300nm

−45mV 300nm ≤ x < 400nm

−5mV − 200µ x
nm

+ 250nV x2

nm2 300nm ≤ x < 600nm

−275mV + 700µ x
nm

+ 500nV x2

nm2 600nm ≤ x < 700nm

−3mV 700nm ≤ x

The function is plotted in Figure 12

(c) Verify that the sample as a whole is electrically neutral.
Since E(x) eventually returns to the same value it started from, the sample as a whole must be
electrically neutral. Another way to see this is to verify that the area enclosed by ρ(x) adds up to
zero (considering areas below the x-axis to be zero).

In addition to the discussion of Gauss’s law and Poisson’s equation, the following two problems refer to the
depletion approximation for PN-junctions.
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Figure 11: Charge Profile
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Figure 12: Potential
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In addition to the supplementary reader, you should also recall, as discussed in class, that, in the absence of an
externally applied bias, the potential in the bulk of the n-type material (away from the depletion region) can

be taken to be VT ln
(

Nd

ni

)

and that in the bulk of the p-type material (away from the depletion region) can

be taken to be VT ln
(

ni

Na

)

. Here VT = kT
q

denotes the thermal voltage, ni the intrinsic carrier concentration

of holes and of electrons in pure silicon, and Na and Nd respectively denote the doping densities of acceptors
and donors (in the p-type and n-type materials, respectively).
The potentials are thought of as referenced to an “intrinsic” situation - if one solves Poisson’s equation
exactly with these boundary conditions, the potential will be zero precisely when the electron density and
the hole density are equal (each equal to the intrinsic carrier concentration).

9. Consider a Silicon PN-junction in thermal equilibrium at room temperature with no externally applied
bias. Assume that Na = 1019cm−3 and Nd = 1017cm−3.
Using the depletion approximation, determine the width of the depletion region in the n-type material,
xn0

, the width of the depletion region in the p-type material, xp0
, the electric field E(x) (as a function

of the distance x from the junction, assuming the n-type region corresponds to positive x) and the
potential Φ(x) as a function of x.
Also determine the maximum magnitude of the electric field.
We have ni = 1010cm−3. This gives the potential for x large and negative (i.e. in the bulk of the p-type
material) as −VT ln(107)
Firstly, we know from the lecture nodes that

Φ(−xp0
) = VT ln

(

ni

Na

)

and

Φ(xn0
) = VT ln

(

Nd

ni

)

Evaluating these formulae with the suitable constants ni = 1010cm−3 and VT = 26mV as well as the
given values for NA and ND, we have

Φ(−xp0
) ≈ −538.81mV Φ(xn0

) ≈ 419.07mV

By the depletion approximation, in the interval [−xp0
, xn0

], all free carriers recombine. Using the
approximation that the concentration of free majority carriers in the n-type (p-type) material is ND

(NA), this implies that in the interval [−xp0
, 0] we have a negative charge −NAq and in the interval

[0, xn0
] we have a positive charge NDq. We also have the constant q = 1.602 ∗ 10−19C. Hence, we can

evaluate

ρ
−
≈ −1.602

C

cm3
ρ+ ≈ 16.02

mC

cm3

The charge density profile is sketched in Figure 13. Note that the plot is not drawn in scale.
Even though we do not know the lengths xn0

and xp0
yet, we know that Naqxp0

= Ndqxn0
as the

complete PN-junction is electrically neutral. This allows us to state

xp0
=

Nd

Na

xn0
(1)

For the same reason, we can assume that E(−xp0
) = 0. As in the two previous problems, we use

Gauss’s law to get the function of the electric field

E(x) =















0 x < −xp0
ρ
−

ǫ
(x + xp0

) −xp0
≤ x < 0

ρ
−

ǫ
xp0

+ ρ+

ǫ
x 0 ≤ x < xn0

0 xn0
≤ x

(2)

From the discussion on page 39 in the supplementary reader, you can infer that the voltage between
xn0

and xp0
can be calculated

Φ(xn0
) − Φ(−xp0

) =
qNd

2ǫ
x2

n0
+

qNa

2ǫ
x2

p0
(3)
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Figure 13: Charge Density Profile

From the discussion above, we also know that

ΦB = Φ(xn0
) − Φ(−xp0

)

= VT ln

(

Nd

ni

)

− VT ln

(

ni

Na

)

= VT ln

(

NdNa

n2
i

)

(4)

Equations (1), (3), and (4) can be combined to get the solution

xn0
=

√

2ǫΦB

qNd

Na

Na + Nd

and

xp0
=

√

2ǫΦB

qNa

Nd

Na + Nd

plugging in the values, we get

xn0
≈ 11.07µm xp0

≈ 0.111µm

Lastly, we can use (2) to determine the maximum of the electric field which is at the junction (x = 0).

Emax = E(0) =
ρ
−

ǫ
xp0

≈ −172
kV

cm

10. Repeat the preceeding problem for a Ge PN-junction in thermal equilibrium at room temperature with
no externally applied bias, assuming that Na = 1017cm−3 and Nd = 1016cm−3 using the depletion
approximation.
We can use exactly the same formulae as in the previous problem. However, note that the relevant
constants of silicon and germanium are different. For germanium, we have

ni = 2 ∗ 1013cm−3 ǫr = 16
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We can calulate

ρ
−
≈ −16.02

mC

cm3
ρ+ ≈ 1.602

mC

cm3

Refer to the solution of the previous problem for the function of the electric field.

ΦB = 383.03mV

xn0
= 24.82µm

xp0
= 2.482µm

Emax = −28.07
kV

cm
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