EECS 40 Pre-Lab: RLC Circuits

Name: _____ TA: _____

Section:

For the first problem, imagine that a capacitor of capacitance C is attached to a voltage source, and fully charged to voltage A:

Now, imagine that the charged capacitor is disconnected from the voltage source, and connected to an inductor of inductance L at time t=0, as shown:

1.

a) Find an equation for V(t).

b) Give the resonance frequency in radians/second and Hz.

c) Sketch V(t) on the graph provided.

Waveform

			ŧ			
			ŧ.			
 			 T	 		
****	****	****		 ••••	****	****
 	••••	••••		 •••••	••••	••••
 	••••	••••		 ••••		

2. Consider the series RLC circuit shown below:

a) Using complex impedance and phasors, solve for the transfer function V_{out} / V_{in} with V_{out} being the voltage across the resister, and V_{in} being the sinusoidal voltage source. What kind of filter is this?

b) Find the resonance frequency in radians/second (ω_0) and Hz (f_0), quality factor (Q), and bandwidth (B) for the circuit. (copy these values onto your lab report)

a. Write the KVL equation for the above circuit. This will be an equation in terms of the components' values, $v_c(t)$, i(t), and their derivatives. Use what you know about capacitors to rewrite your expression as a differential equation in terms of solely $v_c(t)$ and its derivatives.

b. Divide your equation through by the necessary values so that the second-order (d^2/dt^2) term has coefficient 1 (This should now be in the general form from (Eq. 1 in the Lab Guide). What is the resonant frequency ω_0 ? What is the damping factor α ?

c. Let L = 10 mH, C = 1 nF. What is the resonant frequency ω_0 ?

d. What value of R will result in critical damping? Calculate α . How does this compare to the resonant frequency ω_0 ?

e. Choose a value for R that will produce the underdamped solution, and calculate α . What is the resonant frequency ω_0 ? What is the natural frequency ω_n ? How long is the period, T, of a wave oscillating at the natural frequency?

f. Repeat part d. for overdamping.