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We introduced the periodic table and the elements of major interest in semi-
conductor electronics (the group IV elements, especially silicon and germa-
nium, and the group III and group V elements, which are used as dopants).
We discussed the lattice structure of silicon (see Chapter 3 of the supplemen-
tary notes) and the fact that electrons in a crystal sample are better thought
of as belonging to the entire sample rather than to individual atoms

The following sections 2 -6 flesh out the discussion of the Fermi-Dirac
distribution in the lecture.
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In Chapter 17 of the book of Giancoli, for instance, you will find a discussion
of how experimental scientists studying gases in various regimes of pressure,
volume and temperature arrived at the ideal gas law

PV = nRT

where P is the pressure, which is a force per unit area, V the volume, T is the
absolute temperature, measured in degrees Kelvin, n is the number of moles
of the gas, and R is a constant of nature, called the universal gas constant,
which is roughly 8.315 Joules/mole-K. This law applies pretty well to every
gas, if the temperature is not too close to the liquefaction temperature of the
gas and the pressure is not too high (i.e the gas is sufficiently dilute). As
a matter of fact, these experiments are what led to the notion of absolute
temperature, because extrapolating from the data suggested the physical im-
possibility of temperatures below −273.15 degrees Centigrade. The ideal gas
law is an equation of state, since it ties together certain variables relating to
the state of the gas in a (more or less) inexorable way.

In this equation, a mole is the amount of the gas that has N0 mole-
cules, where N0, which is roughly 6.02 × 1023, is the Avogadro number.
R

NA
, i.e. the ratio of the universal gas constant to the Avogadro num-

ber, is called the Boltzmann constant. It is denoted k and equals roughly
1.38× 10−23Joules/K. We may rewrite the ideal gas law as
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PV = NkT (1)

where now N is the number of molecules of the gas.
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A triumph of the kinetic theory of gases, developed by Maxwell, was to
“explain” the ideal gas law. This is discussed in Chapter 18 of the book of
Giancoli. If one considers a collection of N molecules of a gas, each with
mass m, confined to a cubical box and assumes that they never interact with
each other (we think of the molecules as being “point particles”, i.e. they
are so small that they never influence one another: this corresponds to the
diluteness required of real-world gases for them to obey the ideal gas law)
and undergo perfect elastic reflections at the surfaces of the box, one can
prove the relation (as done in Chapter 18 of Giancoli)

PV =
2

3
N(

1

2
mv̄2)

Here P denotes the average pressure exerted by the particles on the surfaces
of the box, V the volume of the box, and v̄2 the mean-square velocity of the
particles (the average over the particles of the square of its speed, where the
speed of a molecule is the square root of the sum over all three coordinates of
the square of its individual velocity coordinates). This appears to explain the
ideal gas law and leads to the observation that the average kinetic energy, i.e.
1
2
mv̄2, equals 3

2
kT . Since there are three degrees of freedom for each of the

N point particles to move in three-dimensional space, one can think about
each degree of freedom of each particle as contributing an energy of 1

2
kT to

the total kinetic energy of the system. Note that this is proportional to T .
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The kinetic theoretic “explanation” of the ideal gas law in the preceding
section was possible without needing to worry about what the actual distri-
bution of velocities of the molecules of the gas is. Based on some natural
physical assumptions, Maxwell came up with a formula for this distribution,
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called the Maxwell distribution, whose validity can also be experimentally
tested on real-world gases. The Maxwell distribution has been found to be
in remarkable agreement with experimental observations.

Think of a very large number N of molecules of a gas confined to a cubical
box, as in the preceding section. Each molecule has a velocity with three
coordinates, which we may denote as vx, vy and vz respectively. We require
that the mean-square speed of the collection of molecules is some given value
v̄2 and ask what is the most likely distribution of the individual velocities.
Maxwell made two postulates. First, he assumed that the likelihood of an
individual molecule having some velocity should be a function only of its
energy, or equivalently of its speed, i.e the direction of motion of the molecule
should be irrelevant. Next, he assumed that the distribution of velocities
in each coordinate should be independent of each other, in the sense that
whatever one might know about the actual velocities of the molecule in some
pair of coordinates (say the x-coordinate and the y-coordinate) one learns
nothing about the distribution of the velocity of the molecule in the remaining
coordinate. Remarkably, these two conditions are sufficient to pin down what
the distribution of velocities of molecules is. This is demonstrated in the next
section, which you can skip if you want. The Maxwell distribution of speeds
is

f(v) = 4πN(
m

2πkT
)

3
2 v2e−

1
2

mv2

kT .

(Here f(v) is defined for v ≥ 0 and
∫∞
0 f(v)dv = 1. f(v)dv denotes the

rough fraction of molecules that have speed in (v, v + dv), assuming that dv
is small and that N is very large. Also

∫∞
0 v2f(v)dv equals the target mean

square speed v̄2 corresponding to the formula 1
2
mv̄2 = 3

2
kT , which relates

the average kinetic energy to the absolute temperature.) Note that, since
we assumed that the direction of motion of molecules is irrelevant, this also
gives the distribution of their velocities.

5 Optional: you may skip this section if you

prefer.

In this section we present Maxwell’s calculation that resulted in the Maxwell
distribution. You may skip this section if you wish.
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Let g(vx) denote the distribution of the x-coordinate of the velocity of
the molecules. By the hypothesis that the direction of motion of the mole-
cules is irrelevant, the distribution of the y-coordinate of the velocity of the
molecules will have to be g(vy) and that of the z-coordinate of the molecules
will have to be g(vz). By the hypothesis that the distribution of velocities
in the individual coordinates are independent, the distribution of velocities
must be given by the product g(vx)g(vy)g(vz).

We now imagine another velocity (vx +dvx, vy +dvy, vz +dvz), where dvx,
dvy and dvz are very small. By differentiating the product g(vx)g(vy)g(vz) we
may write g(vx +dvx)g(vy +dvy)g(vz +dvz) up to first order in the terms dvx,
dvy and dvz as g(vx)g(vy)g(vz) + g′(vx)g(vy)g(vz)dvx + g(vx)g

′(vy)g(vz)dvy +
g(vx)g(vy)g

′(vz)dvz, where g′(v) denotes dg
dv

(v).

Suppose now that the speed (or equivalently the kinetic energy) is the
same at (vx + dvx, vy + dvy, vz + dvz) as it is at (vx, vy, vz). Then, by the
hypothesis that the direction of the molecule does not matter, we must have

g(vx + dvx, vy + dvy, vz + dvz) = g(vx, vy, vz).

Using the formula we just derived for g(vx + dvx, vy + dvy, vz + dvz) and
dividing it through by g(vx, vy, vz), this gives the equation

g′(vx)

g(vx)
dvx +

g′(vy)

g(vy)
dvy +

g′(vz)

g(vz)
dvz = 0.

This equation should hold up to first order whenever the kinetic energy at
(vx + dvx, vy + dvy, vz + dvz) is the same as that at (vx, vy, vz), i.e. whenever
(vx + dvx)

2 + (vy + dvy)
2 + (vz + dvz)

2 equals v2
x + v2

y + v2
z . However, by

differentiating v2
x + v2

y + v2
z we see that (recall that dvx, dvy and dvz are very

small) (vx + dvx)
2 + (vy + dvy)

2 + (vz + dvz)
2 equals

v2
x + v2

y + v2
z + 2vxdvx + 2vydvy + 2vzdvz

up to first order in the terms dvx, dvy and dvz. This tells us that the equation

vxdvx + vydvy + vzdvz = 0

4



must also hold up to first order whenever the kinetic energy at (vx +dvx, vy +
dvy, vz + dvz) is the same as that at (vx, vy, vz).

The only way both these equations can hold for all (vx, vy, vz) and all

such choices of dvx, dvy and dvz is if we have g′(v)
g(v)

= cv, for some constant c.

This means we must have ln g(v) = a+ bv2 for some constants a and b. From
this, the Maxwell distribution can be arrived at, since the constants a and
b can be determined from the normalization conditions that

∫∞
−∞ g(v)dv = 1

and
∫∞
−∞ v2g(v) = 1

3
v̄2.
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The Maxwell distribution was discussed in the preceding section as a dis-
tribution on speeds. It can be equivalently discussed as a distribution on
energies. The key principle underlying Maxwell’s approach (the key physical
insight, if you will) is that all states of nature that have the same energy
are equally likely. If instead of a gas of classical molecules we deal, as we
will do below, with a gas of subatomic particles, such as electrons, quantum
mechanical issues come into play. Quantum mechanics does not change this
physical insight of Maxwell. Rather, what it changes is the way in which one
counts the number of states available to nature at any energy level. For the
specific case of electrons, of interest to us below, the Pauli exclusion prin-
ciple comes into play and prevents more than one electron from occupying
any given quantum state. As a result of this different way of counting the
number of available states, one arrives at the Fermi-Dirac distribution for
the distribution of energies in an ideal electron gas of N electrons. Writing ε
for the energy of a quantum mechanically allowed energy level, the function

f(ε) =
1

e
ε−µ
kT + 1

(2)

gives the probability that a state at this energy level is occupied, where µ is
a normalization constant which is to be chosen such that the overall number
of particles in the system comes out correctly to N . Note that µ is a function
of the temperature.

5



As we let T approach 0, i.e. as we approach absolute zero, we will find
that there is an energy level, denoted εF , such that f(ε) → 1 for all ε < εF

and f(ε)→ 0 for all ε > εF . This level εF is called the Fermi level.

Finally, notice that if for any positive T , if the energy ε is large enough
(how large it needs to be depends on T ) then in the denominator of equation

(2) we can neglect 1 relative to e
ε−µ
kT , so the Fermi-Dirac distribution begins

to look increasingly like the Maxwell distribution.
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We next discussed the basics of the band theory of crystalline solids. This
is a consequence of the electron wavefunctions interacting with the ions left
behind in the lattice if the wavenumber (wavelength) is just right. View the
webcast video if you did not fully grasp this discussion. You can also read
about band theory in the initial parts of Chapter 3 of the supplementary
notes.
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