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Consider a sample of material of cross section A where the conduction elec-
tron concentration varies in the x-direction, but is constant over each cross-
section. Let n(x) denote the density of conduction electrons (measured in
m−3) at location x. There will be a net movement of electrons in order to
even out the imbalance in density; this process is called diffusion. Because
electrons are charged particles, this diffusion will result in a current, called
the diffusion current. We will normalize this to a per-unit-cross-sectional-
area basis and talk about it via the diffusion current density, denoted Jdiff

n ,
measured in amps/m2. One can figure out a formula for the diffusion current
density by visualizing the movement of electrons during their free motion
between collisions after breaking the x-direction up into little intervals of
length dx. The rate of flow of electrons from the left to the right across the
cross-section at x should be roughly proportional to n(x − dx

2
), while that

from the right to the left should be roughly proportional to n(x + dx
2

). The
proportionality constant should be the same because the rate of flow is pro-
portional to the number of particles flowing, whatever may be the details of
how the particles move. Thus the diffusion current density should be pro-
portional to the gradient of the conduction electron density. This is called
Fick’s law. We write

Jdiff
n (x) = qDn

dn

dx

where Dn is called the diffusion coefficient for electrons, measured in m2/sec.
Note that an increasing conduction electron density (positive dn

dx
) leads to a

net flow of electrons to the left which represents a positive current to the
right, so the sign in this equation is correct. Likewise we will have

Jdiff
p (x) = −qDp

dp

dx

where p(x) denotes the density of holes, which we think of as varying only
in the x-direction, being constant over each cross-section, Jdiff

p is the hole
current density, measured in amps/m2, and Dp is the diffusion coefficient for
holes, measured in m2/sec.

Typical values at room temperature are Dn = 25 cm2/sec and Dp = 10
cm2/sec. This is also consistent with the Einstein relation, see below.
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The Einstein relation or Einstein-Smoluchowski relation gives a fundamen-
tal connection between the diffusion coefficient and the mobility for both
electrons and holes. We have

Dn =
kT

q
µn and Dp =

kT

q
µp.

In these equations recall that k and q are fundamental constants of nature
(k is the Boltzmann constant and q is the charge of the proton), while T
denotes that absolute temperature. As a sanity check, you should verify that
the units work out in these formulas (kT

q
has the units of Volts). This is an

example of a fluctuation-dissipation theorem.

The Einstein relation was derived in 1905 by Einstein in his study of
Brownian motion (the phenomenon, observed in the 1780’s by the botanist
Robert Brown, that very light particles such as pollen, when suspended in
a liquid, appear to exhibit random motions: this is now understood to be
the result of the random bombardment of the suspended particles by the
molecules of the fluid; at the time it was unclear whether pollen was in fact
alive). The original derivation of Einstein was in a mechanical context, but
the principles he used are much more general in scope. The Einstein relation,
as applied to electrons (or holes), comes from applying the principles of the
kinetic theory of gases to an “electron gas”. We now derive the Einstein
relation for electrons (and holes). The following section is optional: you can
skip reading it if you want.

3 Optional: you may skip this section if you

prefer.

We consider the case of electrons; a parallel discussion may be carried out
for holes. Consider a section of the slab of material of length dx in the x-
direction, with the cross-sectional area A. We think of dx as being very small.
Recall that n denotes the density of conduction electrons per unit volume.
The total number of conduction electrons in the slab is then roughly nAdx.
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We think of the conduction electrons as forming an “electron gas”. This
electron gas exerts a “pressure”, according to the kinetic theory of gases. We
will use the notation π for this pressure (since p has already been used up for
the density of holes). Pressure is measured as force per unit area, as usual.
Electrons are fermions, subject to the Pauli exclusion principle. Thus the
electron gas is a “Fermi gas” and as such may be expected to behave differ-
ently from a classical ideal gas (for instance a Fermi gas has nonzero pressure
even at absolute zero, because of the exclusion principle). However, we are
only interested in discussing the conduction electrons. These are sufficiently
energetic that we may think of them as forming a classical ideal gas.

Thinking of the conduction electron gas as an ideal gas, from the kinetic
theory of gases we have the equation of state

π(Adx) = (nAdx)kT.

Here Adx is the volume of the slab and nAdx is the number of electrons in
the slab, so this is the analog of the equation PV = NkT we saw a couple
of lectures ago when we were discussing the ideal gas law. We thus get

π = nkT.

Now suppose the electron density is a function of x. Then the “pressure” is
also a function of x, and this equation would read

π(x) = n(x)kT. (1)

If the electron density is a function of x, the gradient in the pressure of
the electron gas must manifest itself as a force on each electron (because the
pressure on the electron from the left is different from that on it from the
right). We denote this force per electron by f(x) at location x. The net force
from the left on the electrons in the slab is π(x − dx

2
)A, while the net force

from the right is π(x + dx
2

)A. Since the total number of electrons in the slab
is n(x)Adx, the force to the right per electron is

f(x) =
π(x− dx

2
)A− π(x + dx

2
)A

n(x)Adx
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This yields the equation
dπ

dx
= −n(x)f(x).

Electrons react to this force as they would to the force due to an electric
field. Namely, because of collisions with the ions in the lattice, impurities,
and crystal defects, the effect of this force is to set up a drift velocity, whose
value is characterized by the mobility, as in the previous lecture. The force
per electron to the right at location x, i.e. f(x), has an effect equivalent to

an electric field per electron to the left of f(x)
q

(recall that electrons move in a

direction opposite to that of the electric field), so it results in a drift velocity
v(x) (note that this also depends on x) of electrons to the right given by

v(x) = µn
f(x)

q
,

where µn denotes the mobility of electrons. Combining this with the preced-
ing equation, we get

dπ

dx
= −qn(x)v(x)

µn

(2)

On the other hand, we have Fick’s law, which tells us that the current
due to electrons moving to the right across the cross-sectional area of A at
location x during a very small interval of time dt can be written as

qDn
dn

dx
Adt

where Dn is the diffusion coefficient. This number must, however, also equal

−qn(x)Av(x)dt

because v(x)dt is the net distance moved by electrons with drift velocity
v(x) in a time interval dt (note that “drift velocity” is a notion referring to
overall movement by the electron gas at any location and not to the motion
of individual electrons; the latter also has a substantial random component).
This gives the equation

−Dn
dn

dx
= n(x)v(x) (3)

Combining equations (1), (2) and (3) proves the Einstein relation, as you
can easily verify.
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Consider a slab of silicon of cross section A, with all variations being in the
x-direction. Let n(x) denote the density of conduction electrons and p(x) the
density of holes in the valence band. In thermal equilibrium there should be
no net flow of current across any cross-section. For electrons, this gives the
equation

qn(x)µnE(x) + qDn
dn

dx
= 0

where we have written E(x) to emphasize that we think of the electric field
as varying with x (this electric field includes the possibility of an externally
applied field, but also the electric fields that result from movement of the
free electrons and holes, as e.g. near a p-n junction, which is the case of most
interest to us). This can be rearranged to give

dn

dx
= − µn

Dn

n(x)E(x) = − q

kT
n(x)E(x)

where the second step uses Einstein’s relation. Writing the electric field as
the gradient of a potential

E(x) = −dφ

dx

(where the potential is only defined up to the choice of an arbitrary reference
potential) and solving, we get for any two points x and x0, the equation

φ(x)− φ(x0) = VT ln
n(x)

n(x0)

where VT = kT
q

is the thermal voltage (roughly 26 millivolts at room tem-

perature). It is conventional to choose the potential reference by setting
φ(x0) = 0 at a hypothetical point x0 where n(x0) equals the intrinsic carrier
concentration ni (which is roughly 1010 cm−3 for silicon). With this choice
we get the equation

φ(x) = VT ln
n(x)

ni

(4)

which is used in your homework set.
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By the mass action law, we have n(x)p(x) = n2
i . Substituting this, into

the preceding equation would give

φ(x) = VT ln
p(x)

ni

. (5)

This could also have been arrived at directly by starting with holes and going
through the steps in the preceding paragraph.

5

You can now read through the supplementary reader starting with Section
3.2 and going through to the end of Section 3.3.2. We will discuss the rest
of Chapter 3 of the supplementary reader (which deals with biasing of p-n
junction diodes) at the beginning of the next lecture. There is one important
point to keep in mind that connects the formulas you see in the supplementary
reader for the potential and the formulas we need, the way the potential has
been defined in this class. The function called φ0(x) is the potential when
we choose as reference that the potential in the bulk p-type material is 0, i.e.
that φ0(−xp0) = 0 (see the line just about equation (15) of the supplementary
notes; here −xp0 denotes the edge of the depletion region in the p-type region,
under the depletion approximation). However, the potential, as defined in
class, is the function φ(x) which satisfies both the formulas (4) and (5). Thus
we have

φ(−xp0) = −VT ln
Na

ni

where Na denotes the doping density (of acceptors) in the p-type region and
ni the intrinsic carrier concentration, and

φ(−xn0) = −VT ln
Nd

ni

where Nd denotes the doping density (of donors) in the n-type region. In
other words, we have

φ(x) = φ0(x)− VT ln
Na

ni

.
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Because the p-n junction as a whole is electrically neutral, we must have,
under the depletion approximation, the equation

qNaxp0 = qNdxn0 (6)

(this is equation (12) of the supplementary notes). In the supplementary
notes not enough information has been given to allow you to figure out the
actual values of xn0 and xp0. However, we do have enough information to do
this, because of the equations (4) and (5). From these equations we know
that the total rise in potential across the depletion region must equal

φB = VT ln
NaNd

n2
i

(where this equation defines the notation φB, which is called the built-in
potential at the junction). Given the equation for φ(x) (or equivalently of
φ0(x)) derived in the supplementary notes, the requirement that the total rise
in potential across the junction equals φB allows us to determine xn0 + xp0

and from this we can determine both xn0 and xp0 by using equation (6). The
details of this algebra are easy, so you can do them yourself you wish. The
answers we get are

xn0 =

√
2εsφB

qNd

Na

Na + Nd

and

xp0 =

√
2εsφB

qNa

Nd

Na + Nd

,

where εs denotes the permittivity of silicon given roughly by εs = 11.7ε0,
where ε0 denotes the permittivity of vacuum. You can take ε0 = 8.85×10−12

Farads/m, so you can take εs = 1.035× 10−10 Farads/m.

All the formulas that you need to do Homework 9 are now available.
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Junctions of n- and p-type Regions

p-n junctions form the essential basis of all semiconductor devices.

Therefore, understanding the p-n junction is important.

What happens to the electrons and holes when

n and p regions are brought into contact :

n  p

 aluminum aluminum

 wire

   ?

*Note that the textbook has a very good explanation.
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The pn Junction Diode
Schematic diagram Circuit symbol

p-type     n-type
ID

net donor
concentration ND

net acceptor
concentration NA

+    VD –
cross-sectional area AD

Physical structure:
(an example)

p-type Si

n-type Si

SiO2SiO2

metal

metal

ID+

VD

–

For simplicity, assume that
the doping profile changes 
abruptly at the junction.
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Depletion Region Approximation
• When the junction is first formed, mobile carriers diffuse

across the junction (due to the concentration gradients)
– Holes diffuse from the p side to the n side,              

leaving behind negatively charged immobile acceptor 
ions

– Electrons diffuse from the n side to the p side,        
leaving behind positively charged immobile donor ions

A region depleted of mobile carriers is formed at the junction.
• The space charge due to immobile ions in the depletion region 

establishes an electric field that opposes carrier diffusion.

+
+
+
+
+

–
–

–
–
–

p n

acceptor ions donor ions
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Charge Density Distribution
Charge is stored in the depletion region.

quasi-neutral p region

+
+
+
+
+

–
–

–
–
–

p n

acceptor ions donor ions

depletion region quasi-neutral n region

charge density (C/cm3)

distance
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