Reading:

Chap 12.1-12.6 Hambley.
Chap 3.3 of Rabaey

Problems:

Chap 12: 12.15, 12.24, 12.30, 12.37, 12.40, 12.47 (midband refers to the frequencies at which the capacitors are short), 12.51

Additional Problems:

Problem 1

The circuit above has the following parameters:
$V_{DD} = 5V$, $R_1 = 20k\Omega$, $R_2 = 30k\Omega$, $R_S = 1k\Omega$, $R_D = 4k\Omega$, $V_{Th}(M_1) = 0.5V$

a) Find the value of V_G.
b) From the I_D vs. V_{GS} curve below, find the values of I_{DQ}, V_{GSQ}.

c) From the values of I_{DQ}, V_{GSQ} and V_T, draw the I_D vs. V_{DS} curve for M_1. **Assume** $\lambda = 0$. Annotate V_{GSQ}, I_{DQ} and the point where M_1 enters saturation.

d) From the I_D vs. V_{DS} curve you drew, find the value of V_{DSQ}.

e) Is M_1 in saturation?

f) Find V_o.

Problem 2

Consider the Common Source amplifier above. C_{gs} is the capacitance between the gate and the source of the NMOS.

\[
\begin{align*}
V_{DD} &= 15 \text{ V} \\
V_{Tn} &= 1 \text{ V} \\
\mu_n C_{ox} &= 100 \frac{\mu A}{V^2} \\
\frac{W}{L} &= 20 \\
\lambda &= 0 \\
R_1 &= 4 \text{ M}\Omega \quad R_2 = 1 \text{ M}\Omega \quad R_D = 2K\Omega \quad R_L = 20K\Omega \quad R_s = 10K\Omega \quad C_{gs} = 5 \text{ fF} (1 \text{ fF} = 10^{-15} \text{ F})
\end{align*}
\]
a. What is I_{DSQ} and V_{DSQ}?

Hint: All the capacitors, including C_{gs}, are open circuit for DC analysis.

b. Draw the small signal model for the circuit and find the v_g/v_{in}.

Hint: All the capacitors except for C_{gs} are short circuit for the small signal analysis. Do include C_{gs} in your small signal analysis.

c. Find the small signal transfer function, $\frac{v_{out}}{v_{in}}$. Draw the bode plot for the transfer function.

Problem 3

![Circuit Diagram]

The circuit shown is biased so that both transistors are in saturation. M1 is an N-MOS and M2 is a P-MOS. The source terminals are indicated by the arrows.

a. Draw the small-signal model of the P-MOS transistor in saturation. (It should be very similar to an N-MOS, differing only by signs). Give expressions for g_{m2} and r_{d2} in terms of the MOSFET parameters and large-signal current.
b. Draw the small-signal model of the whole circuit.

c. Find the voltage gain of this circuit in terms of g_{m1}, g_{m2}, r_{d1}, and r_{d2}.

Problem 4

Find the transfer function of the following amplifier.
Use $R_1 = 10k$, $C_1 = 0.01\mu F$, $R_2 = 1k$, $C_2 = 0.001\mu F$, and $G_m = 0.01S$.