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Logistics and Lab Reminder 

• If you have not submitted a spec and want to 

do a custom Project 2, talk to me right after 

class 

• HW4 due today at 5 

• HW5 due Tuesday at 2PM (it will be short, 

and up by 5 PM today) 

• As requested, all reading assignments for 

next week will be posted tonight 

• We expect you to understand lab concepts. 

For example, the Schmitt Trigger: 

– Do you know what they are and what they do? 
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HW Clarification 

• There are a bunch of hints on the bspace 

forums 

• “Zero state response” and “zero input 

response” are terms that I haven’t used in 

lecture, but they’re really easy and they’re 

in the book 

– Zero input response: The response you get 

with f(t)=0 [same as homogeneous solution] 

– Zero state response: The response you get 

with y(0)=0 [complete response with initial 

condition equal to zero] 



4 EE40 Summer 2010 Hug 

To the board… 

• For LC and RLC circuits 
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RLC Circuits 

• They are important, but not so much for 
digital integrated circuit design 

• They do play a role in the world of analog 
circuits, but that’s a bit specialized for us 
to spend a great deal of time 

– Usually care more about “frequency 
response” than the actual shape of the 
response in time 

• If you want to learn more about analog 
circuit design (it is hard and probably 
awesome), see EE 
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Let’s step back a second 

• Earlier this week, I said capacitors are 

good for 

– Storing energy 

– Filtering 

– Modeling unwanted capacitances in digital 

circuits 

• We’ve discussed the first case pretty 

heavily now, and filtering will come in great 

detail next week 

• For now, let’s talk about delay modeling 
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When we perform a sequence of computations using a 

digital circuit, we switch the input voltages between logic 0 

(e.g. 0 Volts) and logic 1 (e.g. 5 Volts). 

The output of the digital circuit changes between logic 0 

and logic 1 as computations are performed. 

Application to Digital Integrated Circuits (ICs) 
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• Every node in a real circuit has capacitance; it’s the charging 
of these capacitances that limits circuit performance (speed) 

We compute with pulses.  

We send beautiful pulses in: 

But we receive lousy-looking 

pulses at the output: 

Capacitor charging effects are responsible! 
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Digital Signals 
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Circuit Model for a Logic Gate 

• As we’ll discuss in a couple of weeks, electronic building 

blocks referred to as “logic gates” are used to implement 

logical functions (NAND, NOR, NOT) in digital ICs 

– Any logical function can be implemented using these gates. 

• A logic gate can be modeled as a simple RC circuit: 

+ 

Vout 

– 

R 

Vin(t) 
+ 
 C 

switches between “low” (logic 0)  

and “high” (logic 1) voltage states 
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Transition from “0” to “1” 

(capacitor charging) 
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Transition from “1” to “0” 

(capacitor discharging) 

(Vhigh is the logic 1 voltage level) 

Logic Level Transitions 
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What if we step up the input, 

 

 

 

wait for the output to respond, 

 

 

 

then bring the input back down?  
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Sequential Switching 
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The input voltage pulse 

width must be long enough; 

otherwise the output pulse 

doesn’t make it. 

(We need to wait for the output to 

reach a recognizable logic level, 

before changing the input again.) 
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V in 

R 
V out 

C 

Suppose a voltage pulse of width 

5 ms and height 4 V is applied to the 

input of this circuit beginning at t = 0: 
R = 2.5 kΩ 

C = 1 nF 

• First, Vout will increase exponentially toward 4 V. 

• When Vin goes back down, Vout will decrease exponentially  

   back down to 0 V. 

 

What is the peak value of Vout? 

The output increases for 5 ms, or 2 time constants. 

 It reaches 1-e-2 or 86% of the final value. 

0.86 x 4 V = 3.44 V is the peak value 

Example 

t = RC = 2.5 ms 
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Vout(t) = 
4-4e-t/2.5ms for 0 ≤ t ≤ 5 ms 

3.44e-(t-5ms)/2.5ms for t > 5 ms { 
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Parasitic Capacitances 

• We’ll discuss these parasitic capacitances 

in the context of digital integrated circuits 

right after midterm 2 
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AC Inputs 

• We’ve discussed to this point how we deal 

with constant and weird mathematically 

ideal inputs (e. g. 𝑉 𝑡 = 𝑡2)  

• Next we’ll discuss sinusoidal inputs or AC 

inputs, useful for, in order of increasing 

generality: 

– Finding 60 Hz wall voltage response 

– Finding response to inputs that can be 

approximated by a sum of sinusoids (e.g. 

square waves) 

– Finding “frequency response” 
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Solving Circuits with AC Sources 

• In principle, we can use the MPHS to 

solve the circuit below: 

• Will finding the homogeneous solution be 

difficult? 
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Solving Circuits with AC Sources 

• Will finding the particular solution be 

difficult? 
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Solving Circuits with AC Sources 

• Will finding the particular solution be 

difficult? 

𝑖𝐿 = 𝐴𝑒−
𝑅
𝐿𝑡 + 2𝑉

𝜔𝐿

𝑅2 + 𝜔2𝐿2
cos (𝜔𝑡 +

5𝜋

4
) 
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Phasors 

• Solving simple resistive circuits 
– Hard way (kitchen sink method) 

– Easy way (node voltage) 

• Op-amp circuits 
– Hard way (taking limits as 𝐴 → ∞) 

– Easy way (summing point constraint) 
• Requires negative feedback, which can be hard to 

identify 

• Circuits with memory  
– Hard way (solving ODE) 

– Easy way (intuitive method) 
• Requires DC sources 

– Next will come an easy method for AC sources 
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Particular Solution 
Connector Route 

Two Paths 

Trigonometry 

Hell 

Solving ODEs Using Impedances 

and Phasors 

Solution Town 

MPHS Limited 
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Basic Idea and Derivation of Impedances 

• Naïve way is to pick a particular solution 
which looks like 𝑣𝑜,𝑝 = 𝐾1 cos 𝑤𝑡 + Φ  
– Unnecessary algebra and trigonometry 

• Instead, we’ll just replace the source by a 
new source  𝑣 = 𝑉𝑖𝑒

𝑗𝑤𝑡 and solve this new 
problem 

• Waitttttttttttt, what?  
– Ok this may seem a little weird, we’re replacing 

the voltage source with a new one that we just 
made up, and sure it is also complex valued, but 
just trust me. 

𝑣𝐼 = 𝑉𝑖𝑐𝑜𝑠 𝜔𝑡 ,  𝑡 > 0 

𝑉𝑂
′ = −

𝑉𝑂

𝑅𝐶
+

𝑉𝑖𝑐𝑜𝑠(𝜔𝑡)

𝑅𝐶
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New Voltage Source Problem 

• Homogeneous solution is just 𝐴𝑒−𝑡/𝑅𝐶 

• Pick particular solution 𝑉𝑂,𝑃 = 𝑘1𝑒
𝑗𝑤𝑡, plug in: 

𝑘1𝑗𝜔𝑒𝑗𝜔𝑡 = −𝑘1

𝑒𝑗𝜔𝑡

𝑅𝐶
+ 𝑉𝑖

𝑒𝑗𝜔𝑡

𝑅𝐶
 

• Divide by 𝑒𝑗𝑤𝑡 

𝑣𝐼 = 𝑉𝑖𝑒
𝑗𝑤𝑡    𝑡 > 0 

𝑉𝑂
′ = −

𝑉𝑂

𝑅𝐶
+ 𝑉𝑖

𝑒𝑗𝜔𝑡

𝑅𝐶
 

𝑘1𝑗𝜔 = −𝑘1

1

𝑅𝐶
+ 𝑉𝑖

1

𝑅𝐶
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New Voltage Source Problem 

• Divide by 𝑒𝑗𝑤𝑡 

 

• Solve for 𝑘1 

 

• Particular solution is 

𝑣𝐼 = 𝑉𝑖𝑒
𝑗𝑤𝑡    𝑡 > 0 

𝑉𝑂
′ = −

𝑉𝑂

𝑅𝐶
+ 𝑉𝑖

𝑒𝑗𝜔𝑡

𝑅𝐶
 

𝑘1𝑗𝜔 = −𝑘1

1

𝑅𝐶
+ 𝑉𝑖

1

𝑅𝐶
 

𝑘1 = 𝑉𝑖

1

1 + 𝑗𝜔𝑅𝐶
 

𝑉𝑂,𝑃 𝑡 = 𝑉𝑖

1

1 + 𝑗𝜔𝑅𝐶
𝑒𝑗𝑤𝑡 
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To Recap 

• AC source made it hard to find particular solution: 

𝑣𝐼 = 𝑉𝑖𝑐𝑜𝑠 𝜔𝑡 ,  𝑡 > 0 

𝑉𝑂
′ = −

𝑉𝑂

𝑅𝐶
+

𝑉𝑖𝑐𝑜𝑠(𝜔𝑡)

𝑅𝐶
 

𝑣𝐼 = 𝑉𝑖𝑒
𝑗𝑤𝑡    𝑡 > 0 

𝑉𝑂
′ = −

𝑉𝑂

𝑅𝐶
+ 𝑉𝑖

𝑒𝑗𝜔𝑡

𝑅𝐶
 

• So we just replaced the annoying source, giving us: 

• This gave us the particular solution: 

𝑉𝑂,𝑃 𝑡 = 𝑉𝑖

1

1 + 𝑗𝜔𝑅𝐶
𝑒𝑗𝑤𝑡 
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The Inverse Superposition Trick 

𝑣𝐼 = 𝑉𝑖𝑒
𝑗𝑤𝑡    𝑡 > 0 

• Our complex exponential source is actually useful 

𝐴𝑒𝑗𝜔𝑡 = 𝐴𝑐𝑜𝑠 𝜔𝑡 + 𝑗𝑠𝑖𝑛(𝜔𝑡) 

• Superposition tells us that our output 𝑉𝑂,𝑃 𝑡  will just 

be the sum of the effect of these two sources 
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Inverse Superposition 

𝑉𝑂,𝑃 𝑡 = 𝑉𝑖

1

1 + 𝑗𝜔𝑅𝐶
𝑒𝑗𝑤𝑡 

• Superposition tells us that our output 𝑉𝑂,𝑃 𝑡  will just 

be the sum of the effect of these two sources 

• Luckily for us, all complex numbers are the sum of 

their real and imaginary parts x = 𝑎 + 𝑗𝑏 

• Just find real part and we’re done!  
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Real Part of Expression 

𝑉𝑂,𝑃 𝑡 =
1

1 + 𝑗𝜔𝑅𝐶
𝑉𝑖𝑒

𝑗𝑤𝑡 

• Finding the real part of the expression is easy, it just 

involves some old school math that you’ve probably 

forgotten (HW5 will have complex number exercises) 

• Key thing to remember is that complex numbers 

have two representations 

– Rectangular form: 𝑎 + 𝑗𝑏 

– Polar form: 𝑟𝑒𝑗𝜃 

𝑟 = 𝑎2 + 𝑏2 

𝜃 = arctan
𝑏

𝑎
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Real Part of Expression 

• What we have is basically the product of two 

complex numbers 

• Let’s convert the left one to polar form 

– Rectangular form: 𝑎 + 𝑗𝑏 

– Polar form: 𝑟𝑒𝑗𝜃 
𝑟 = 𝑎2 + 𝑏2 

𝜃 = arctan
𝑏

𝑎
 

𝑉𝑂,𝑃 𝑡 =
1

1 + 𝑗𝜔𝑅𝐶
𝑉𝑖𝑒

𝑗𝑤𝑡 

𝑉𝑂,𝑃 𝑡 =
1

𝑅𝑒𝑗𝜙
𝑉𝑖𝑒

𝑗𝑤𝑡 = 𝑉𝑖

1

1 + 𝑤𝑅𝐶 2
𝑒𝜙𝑗𝑒𝑗𝑤𝑡 

𝜙 = arctan (𝜔𝑅𝐶) 
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Real Part of Expression 

𝑉𝑖

1

1 + 𝑤𝑅𝐶 2
𝑒𝑗𝜙𝑒𝑗𝑤𝑡 

𝑉𝑖

1 + 𝜔𝑅𝐶 2
𝑒𝑗(𝜙+𝜔𝑡) 

𝑉𝑖

1 + 𝜔𝑅𝐶 2
(cos 𝜔𝑡 + 𝜙 + 𝑗𝑠𝑖𝑛(𝜔𝑡 + 𝜙)) 
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Real Part of Expression 

𝑉𝑖

1

1 + 𝑤𝑅𝐶 2
𝑒𝑗𝜙𝑒𝑗𝑤𝑡 

𝑉𝑂,𝑃 𝑡 =
𝑉𝑖

1 + 𝜔𝑅𝐶 2
(cos 𝜔𝑡 + 𝜙 + 𝑗𝑠𝑖𝑛(𝜔𝑡 + 𝜙)) 

• Superposition tells us that our output 𝑉𝑂,𝑃 𝑡  will just 

be the sum of the effect of these two sources 

• Thus, particular solution (forced response) of 

original cosine source is just the real part 

𝑉𝑂,𝑃 𝑡 =
𝑉𝑖

1 + 𝜔𝑅𝐶 2
cos 𝜔𝑡 + 𝜙  
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Wait…. That was easier? 

𝑉𝑖

1

1 + 𝑤𝑅𝐶 2
𝑒𝑗𝜙𝑒𝑗𝑤𝑡 

• What we just did was mostly a derivation 

• Only have to do the hard math one time 

– Sort of like intuitive method for DC sources 

• What’s the “easy way” to find a particular solution, 

now that we did the hard math one time? 
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Impedance 

𝑉𝐶,𝑃 𝑡 =
1

1 + 𝑗𝜔𝑅𝐶
𝑣𝐼(𝑡) 

For a complex exponential source: 

𝑉𝐶,𝑃 𝑡 =
1/𝑗𝑤𝐶

1/𝑗𝑤𝐶 + 𝑅
𝑣𝐼(𝑡) 

Rewrite as: 

Let 𝑍𝑐 = 1/𝑗𝑤𝐶 

𝑉𝐶,𝑃 𝑡 =
𝑍𝑐

𝑍𝑐 + 𝑅
𝑣𝐼(𝑡) 

Looks a lot like… voltage divider 
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Impedance Method for Solving AC Circuits 

• With a little more derivation, we can unveil a 
very powerful technique: impedance analysis: 

– Replace capacitors by 𝑍𝐶 =
1

𝑗𝜔𝐶
 

– Replace inductors by 𝑍𝐿 = 𝑗𝜔𝐿 

– Replace resistors with 𝑍𝑅 = 𝑅 

– Replace source(s) with constant source with 
same magnitude (phasor representation) 

• Then treat the whole thing like a resistive 
circuit to get “phasor” version of particular 
solution 

• Optionally, convert back into time variable 

 



35 EE40 Summer 2010 Hug 

Impedance Analysis 

• Requires sinusoidal source 

• Reduces any network of capacitors, 

inductors, and resistors into a big set of  

algebraic equations 

– Much easier to deal with than ODEs 

• Only gives you the particular solution, but 

we usually don’t care about the 

homogeneous solution 
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Impedance Analysis Example 

• On board 
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Extra Slides 

• Impedance example to help you on HW#5 


