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Logistics and Lab Reminder

* |f you have not submitted a spec and want to
do a custom Project 2, talk to me right after
class

« HW4 due today at 5

« HW5 due Tuesday at 2PM (it will be short,
and up by 5 PM today)

* As requested, all reading assignments for
next week will be posted tonight

* We expect you to understand lab concepts.
For example, the Schmitt Trigger:

— Do you know what they are and what they do?
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HW Clarification

* There are a bunch of hints on the bspace
forums

« “Zero state response” and “zero input
response” are terms that | haven’t used in

lecture, but they're really easy and they're
In the book

— Zero Input response: The response you get
with f(t)=0 [same as homogeneous solution]

— Zero state response: The response you get
with y(0)=0 [complete response with initial
condition equal to zero]
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To the board...
* For LC and RLC circuits
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RLC Circuits

* They are important, but not so much for
digital integrated circuit design

* They do play a role in the world of analog
circuits, but that’s a bit specialized for us
to spend a great deal of time
— Usually care more about “frequency

response” than the actual shape of the
response in time

* |If you want to learn more about analog
circuit design (it is hard and probably
awesome), see EE
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Let’s step back a second
 Earlier this week, | said capacitors are
good for
— Storing energy
— Filtering

— Modeling unwanted capacitances in digital
circuits

* We've discussed the first case pretty

heavily now, and filtering will come in great
detail next week

* For now, let’'s talk about delay modeling
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Application to Digital Integrated Circuits (ICs)

When we perform a sequence of computations using a
digital circuit, we switch the input voltages between logic 0
(e.g. 0 Volts) and logic 1 (e.g. 5 Volts).

Typical

Logic 1 o
\ (D—% Output
oV Digital Logic

(Sate (Buffer)

The output of the digital circuit changes between logic 0
and logic 1 as computations are performed.
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Digital Signals

We compute with pulses. !
We send beautiful pulses in: g
time ——
But we receive lousy-looking [%
pulses at the output: s [\ A
time—

Capacitor charging effects are responsible!

Every node in a real circuit has capacitance; it's the charging
of these capacitances that limits circuit performance (speed)
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Circuit Model for a Logic Gate

 As we’ll discuss in a couple of weeks, electronic building
blocks referred to as “logic gates” are used to implement
logical functions (NAND, NOR, NOT) in digital ICs

— Any logical function can be implemented using these gates.

* A logic gate can be modeled as a simple RC circuit:

R

W

+ —1
switches between “low” (logic 0)
and “high” (logic 1) voltage states
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Logic Level Transitions

Transition from “0” to “1” | Transition from “1” to “0”

(capacitor charging) (capacitor discharging)
~t/RC —t/RC
Vout(t) :Vhigh(l_e ) Vout(t) :Vhighe
Vut Vout
Vhigh

0'63Vhigh """" i

» time »time
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(Vhign Is the logic 1 voltage level)
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Sequential Switching

time ——,

time ——

What if we step up the input, ?_—_
=
wait for the output to respond, é
0
é_
then bring the input back down? 5
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Pulse Distortion

The input voltage pulse

==

. width must be long enough;
+ otherwise the output pulse
Vin(D) ID cC—==V,, doesntmake it.
— B (We need to wait for the output to
reach a recognizable logic level,
é before changing the input again.)
Pulse width = 0.1RC Pulse width = RC Pulse width = 10RC
6 6 6
5t CEE by ;
S3ii S3i /A 3]
14 1 : S — 1 :
Of e O! : o : ‘
0 1 2 3 4 5 0 1 2 3 4 5 0 5 10 15 20 25
Time Time Time
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Example

Suppose a voltage pulse of width R
5 us and height 4 V is applied to the Vin°—/W\r—' Vout
iInput of this circuit beginning at t = O: | —C
R =2.5kQ
T=RC=2.5us C=1nF 28

* First, V,; will iIncrease exponentially toward 4 V.

* When V,, goes back down, V_  will decrease exponentially
back downto O V.

What is the peak value of V_ ,?

The output increases for 5 us, or 2 time constants.
- It reaches 1-e2 or 86% of the final value.
0.86 x4V =3.44 V is the peak value
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O 2 4 76 8 10

4-4e25sfor0<t<5pus
3.44e(tous)25us for t > 5 s
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Parasitic Capacitances

« We'll discuss these parasitic capacitances

In the context of digital integrated circuits
right after midterm 2
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AC Inputs

* We've discussed to this point how we deal

with constant and weird mathematically
ideal inputs (e.g.V(t) = t?)

* Next we'll discuss sinusoidal inputs or AC
iInputs, useful for, in order of increasing
generality:

— Finding 60 Hz wall voltage response

— Finding response to inputs that can be

approximated by a sum of sinusoids (e.g.
sguare waves)

— Finding “frequency response”

EE40 Summer 2010
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Solving Circuits with AC Sources

* In principle, we can use the MPHS to
solve the circuit below:

-"-'I.
=
=

iy + i
QA? Lg v, vy = Vsin(wi) t= 0.
|
L

FIGURE 10.48 EL circuit with

sine-wave drive.

» Will finding the homogeneous solution be
difficult?

: —{ )
ip = Ae” WL
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Solving Circuits with AC Sources

R
. —
rL* + i
ﬁ@ LE v, v = Vsin(wt) = (.
|
1

FIGURE 10.48 EL circuit with
sine-wave drive.

« Wil finding the particular solution be

difficult? )
Ki=V
‘ ‘ R2 + w2] 2
i1 = Ky sin(wt) + K5 cos(wt).
K, — —wl.
2T Rt o212
R wl.
ARy oy ﬂ
1 = Ae + ) R+ o2 sin(wif) — \ R+ o2 cos(wt) t=>0

EE40 Summer 2010
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Solving Circuits with AC Sources

R
/L\ w iy +
© Lg v, v = Vsin(wi) t= 0.
R
FIGURE 10.48 RL circuit with
sine-wave drive.

« Wil finding the particular solution be
difficult?

. R . L
i = Ae” WLt Ly sin(wt) — V @ cos(wtf) t=0

.R‘?— + w?] 2 .Rz + w?] 2

R wl 51T
. ——t
I; = Ae L +\/§V cos(wt + —
g RZ + w22 S 7

EE40 Summer 2010 Hug 19




Phasors

» Solving simple resistive circuits
— Hard way (kitchen sink method)
— Easy way (node voltage)

* Op-amp circuits
— Hard way (taking limits as A — )

— Easy way (summing point constraint)
« Requires negative feedback, which can be hard to

identify
 Circuits with memory
— Hard way (solving ODE)

— Easy way (intuitive method)
* Requires DC sources

— Next will come an easy method for AC sources

EE40 Summer 2010
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Two Paths

| 5 &L
Using Impedances | R Solving ODEs

and Phasors

FIGURE 10.48 EL circuit with

sine-wave drive.

VP Lmites
Trigonometry

Partlcular Solutlon
Connector Route

Solution Town
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Basic Idea and Derivation of Impedances

" ) v; = V;cos(wt), t >0
(J{ f% v Vo N V.cos(wt)
r | " RC RC

* Nalve way Is to pick a particular solution
which looks like v, ,, = K; cos(wt + @)

— Unnecessary algebra and trigonometry

* Instead, we'll just replace the source by a
new source ¥ = V;e/"* and solve this new
problem

» Walitttttttttttt, what?

— Ok this may seem a little weird, we're replacing
the voltage source with a new one that we just
made up, and sure it is also complex valued, but
just trust me.
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New Voltage Source Problem

UI —_ Vieth t > O

A
R + ]
C'?v{ C=V, VO V e](l)t
] V), =——+41V;
0 RC ' RC

- Homogeneous solution is just Ae~/R¢

» Pick particular solution V, p = k;e/%¢, plug in:

. eja)t eja)t
klj(l)e‘lwt — _kl_ —+ V_

RC “'RC
« Divide by e/"t
1 1

klj(l) —_ _klﬁ‘l‘ VLE
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New Voltage Source Problem
UI —_ V'eth t > O

A
R + ]
C?v{ C=V, VO V e](l)t
] V), =——+41V;
0 RC ' RC

. Divide by e/t

, 1 1
kijow = —k1ﬁ+ Vi i pr
* Solve for k4 .
k. =
L= 1+]wRC

e Particular solution iIs

Vop(t) =V, i1 ]cheth

EE40 Summer 2010
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To Recap

« AC source made it hard to find particular solution:

R
O

+ vy =V,cos(wt), t >0
, Vo Vicos(wt)
Vo="Ret T Re

* S0 we just replaced

R
O

UI — Vieth t > O

* This gave us the particular solution:

Vop(t) =V;

EE40 Summer 2010
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The Inverse Superposition Trick

« Our complex exponential source Is actually useful

M ;
C? R v =Ve >0
1_rl!: C:: 1,.-}‘

Ael®t = Acos(wt) + jsin(wt)

P+

me(t} f) CS

™~
=

ﬂf’ sin(@, n

* Superposition tells us that our output Vy, p(t) will just

be the sum of the effect of these two sources

EE40 Summer 2010
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Inverse Superposition

Lm {OF [) C= v

am mln

. Superp03|t|on tells us that our output V, p(t) will just
be the sum of the effect of these two sources

1 |
Vor(t) =ViT7 TwRC e/t

 Luckily for us, all complex numbers are the sum of
their real and imaginary parts x = a + jb

« Just find real part and we’re done!
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Real Part of Expression

* Finding the real part of the expression is easy, it just
involves some old school math that you've probably
forgotten (HW5 will have complex number exercises)

1 .
Vo p(t) = V.elWt
230 1+ jwRC
« Key thing to remember is that complex numbers
have two representations

— Rectangular form: a + jb Im(Z)

— Polar form: re/? b — — — — (@b

T
r =+ a2 + b2 R

b "iglg | Re(Z)
6@ = arctan | — .
a

EE40 Summer 2010
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Real Part of Expression

« What we have is basically the product of two
complex numbers

» Let’s convert the left one to polar form

1
V,o(t) = V.elWt
0.p(8) 1+ jwRC
— Rectangular form: a + jb y — \/az + p2
— Polar form: re’? b
@ = arctan -

1 . 1 .
— " V.pJWt _ /. bJj,jwt
Vo p(t) Re® Vie Vi 1+ (WRC()? ©e

¢ = arctan(wRC()
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Real Part of Expression

1
V.
‘1 + (WRC)?

o) oWt

Vi
(1 + wRC)?

o) (@+wt)

V:

EE40 S

1+ a;RC)Z (cos(wt + @) + jsin(wt + ¢))
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Real Part of Expression

Lm {OF [) C= v

ﬂf’ sin( mln

» Superposition tells us that our output V,, p(t) will just
be the sum of the effect of these two sources

Vo p(t) =

Vi .
1+ WRO)? (cos(wt + @) + jsin(wt + ¢))

* Thus, particular solution (forced response) of
original cosine source is just the real part

Vop(t) = a0+ a;RC)Z cos(wt + ¢)
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Wait.... That was easier?

LOHf[!} [) C= Vep

amf(t}lrl

« What we just did was mostly a derivation

* Only have to do the hard math one time
— Sort of like intuitive method for DC sources

« What's the “easy way” to find a particular solution,
now that we did the hard math one time?
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Impedance

(D A + For a complex exponential source:
_ Vi C—T Ve
Vep(t) = t
_ c.p(t) 1+ jwRC v ()
Rewrite as:
Voo (t) = 1/jwC N
C.P _1/jWC+RvI(
LetZ. =1/jwC
Ve p(t) 2o (1)
— 1%
¢P Z.+R!

Looks a lot like... voltage divider
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Impedance Method for Solving AC Circuits

 With a little more derivation, we can unveil a

very powerful technique: impedance analysis:

— Replace capacitors by Z, = —

jwC
— Replace inductors by Z; = jwL
— Replace resistors with Z, = R
— Replace source(s) with constant source with
same magnitude (phasor representation)
* Then treat the whole thing like a resistive
circuit to get “phasor” version of particular

solution
* Optionally, convert back into time variable
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Impedance Analysis

* Requires sinusoidal source

* Reduces any network of capacitors,
iInductors, and resistors into a big set of
algebraic equations
— Much easier to deal with than ODEs

* Only gives you the particular solution, but

we usually don’t care about the
homogeneous solution
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Impedance Analysis Example

 On board

EE40 Summer 2010
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Extra Slides

* Impedance example to help you on HW#5
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