Table 0.2 Rules of boolean algebra. The two entries in the last row are used frequently and are known as DeMorgan's theorem.

AND Rules	OR Rules
$A \cdot A=A$	$A+A=A$
$A \cdot \bar{A}=0$	$A+\bar{A}=1$
$0 \cdot A=0$	$0+A=A$
$1 \cdot A=A$	$1+A=1$
$A \cdot B=B \cdot A$	$A+B=B+A$
$A(B C)=(A B) C$	$A+(B+C)=(A+B)+C$
$A(B+C)=A B+A C$	$A+B C=(A+B)(A+$
$\bar{A} \cdot \bar{B}=\overline{A+B}$	$\bar{A}+\bar{B}=\bar{A} \cdot B$

Example 0.1 Using these rules we can take a number of steps to successively simplify the expression as follows:

$$
\begin{gathered}
F=\overline{\mathbf{A}} \mathbf{B} \overline{\mathbf{C}}+\overline{\mathbf{A}} \mathbf{B C}+\mathbf{A} \bar{B} \mathbf{C}+\mathbf{A B C} \\
F=(\overline{\mathbf{A}} \mathbf{B} \overline{\mathbf{C}}+\overline{\mathbf{A}} \mathbf{B C})+(\mathbf{A} \bar{B} \mathbf{C}+\mathbf{A B C}) \\
F=\overline{\mathbf{A}} \mathbf{B}(\overline{\mathbf{C}}+\mathbf{C})+\mathbf{A C}(\bar{B}+\mathbf{B}) \\
F=\overline{\mathbf{A}} \mathbf{B}(\mathbf{1})+\mathbf{A C}(\mathbf{1})
\end{gathered}
$$

Finally,

$$
F=\overline{\mathbf{A}} \mathbf{B}+\mathbf{A C}
$$

The final expression is clearly simpler than our initial expression.
© 2001 by Prentice Hall, Prentice-Hall, Inc., Upper Saddle River, New Jersey 07458. All rights reserved. No part of this book may be reproduced in any form or by any means, without permission in writing from the publisher.

