EECS 42
 Introduction to Electronics for Computer Science

Prof. Charles T. Choi
c.t.choi@ieee.org
Office hours: Fri 2-4pm @ Cory 463

Charge

- Most matter are neutral (uncharged) most of the time... exceptions: clouds in thunderstorms; people on carpets in dry weather
- Unbalanced charge -> attracts charge of opposite sign; tendency to discharge.

Allie Fletcher alyson@eecs.berkeley.edu Th 10-12pm 179M Cory
Melvin Tsai mtsai@ic.eecs.berkeley.edu F 12-2pm @ 179M Cory
Matthew Webb webb@cory.eecs.berkeley.edu M 10-12pm at 179M

TA sections:Tu 3-4pm B1 Northgate
Tu 4-5pm 3113 Etcheverry
W 10-11am 293 Cory
Th 4-5pm 247 Cory
F 10-11am 293 Cory

Unit of Charge

- Define unit of charge: 1 mm separation, 1 charge, $\mathrm{F}=14.4 \mathrm{X} 10^{-3 \mathrm{~N}} \ldots$... determine that a single charge is 1.609×10^{-19} Coulombs
- Bits of information stored on a chips signify the presence or absence of charge!

Repulsion
force
1 charge
1 mm

Uses of Charge in Electronics

- Store it and detect it
- Example: 64Mbit dynamics RAM(DRAM) Storage cell
$-Q=$ charge stored for " 1 " $=10^{-13} \mathrm{C}$
- Number of charges stored in $\mathrm{Q} /($ unit charge $)=10^{-13} \mathrm{C} /\left(1.609 \times 10^{-19} \mathrm{C} /\right.$ charge $)$

$$
=6.25 \times 10^{5} .
$$

Current

Definition
I = $\Delta \mathrm{q} / \Delta \mathrm{t}$
must pick a direction in order to assign a sign to the charge...
The choice is arbitrary but mandatory(!)

+ charge moving "with the directional array" \rightarrow positive Δ q
- charge moving "opposite the directional array" \rightarrow positive Δ q (not typo!)

Conceptual Problems

- How does charge move through the wire?

Drift due to electric field in the medium

Conceptual Problems

- There is no need to guess the reference direction so that the answer comes out positive... your guess won't affect what the charge carriers are doing!

Unit of Current

- Coulombs/second = Amperes (Amps)
- Current magnitudes:
- Household wiring ... 1-20A (sinusoidal function of time)
- Power transmission... up to kA (sinusoidal function of time)
- Microelectronics: Currents in large integrated circuits such as microprocessors ...nA to $\mathrm{mA}\left(10^{-9} \mathrm{~A}\right.$ to $\left.10^{-3} \mathrm{~A}\right)$

Current vs. Current Density

- Tiny currents can lead to huge current densities (Think of Car tires pressure (32psi) vs Bicycle tires pressure (80 psi), pressure is force density in pound per square inches)
- Current density is equal to current divided by cross sectional area
Example:
- Area

$$
\begin{aligned}
& =1 \mu \mathrm{mX} 1 \mu \mathrm{~m} \\
& =10^{-4} \mathrm{cmX1} 0^{-4} \mathrm{~cm}
\end{aligned}
$$

- $\mathrm{I}=1 \mathrm{~mA} \Rightarrow$ Current density $=10^{8} \mathrm{~A} / \mathrm{cm}^{2}$

Charge Transport

- Charge carriers at room temperature: agitated motion
- One carrier/atom in metals: around 10^{23} cm^{-3}.
- Velocity $=10^{5} \mathrm{~m} / \mathrm{s}=100 \mathrm{~km} / \mathrm{s}$
- collide with atoms every $0.1 \mathrm{ps}=10^{-13} \mathrm{~s}$

Carrier Motion

- Electric Field: carriers "feel" the force F $=q E$ in between collisions...results in "drift". (E = electric field)
- Without electric field: carriers motion would be purely random.

Carrier Motion

- With electric field

E

Remember: Electronics (negative charge) move opposite of \mathbf{E}

Electric Potential Energy

- Electric potential energy U:
$\mathrm{U}=\mathrm{q} \mathbf{E h}, \mathrm{q}$ is the charge, \mathbf{E} the electric field, h the distance electrodes $A \& B$.

Thinking about Voltage

- Potential is always referenced to some point $\left(V_{A B}\right.$ in the example; V_{A} is meaningless without an understood reference point)
- If a conducting path exists between A and B, charges will "drift" due to electric field \rightarrow current flows
- Potential difference is present even without a conducting path.

Voltage Across an Element

- Generalized circuit element with two terminals (wires) a and b, with a potential V_{ab}

Sign Conventions

- Using the sign conventions:

Power

- Circuit elements can "absorbs" or "release" power (that is, from or to the rest of the circuit)
- Power can be a function of time
- Just as current or voltage can be function of time
- How to keep the signs straight for absorbing and releasing power?

Reference Directions

- It is convenient to define the current through a circuit element as positive when entering the terminal associated with the + reference for voltage

For positive current and positive voltage, positive charge "falls down" a potential "drop" in moving through the circuit element: it absorbs
 power.

Figuring out the Direction of Power Flow

- If the circuit element does not have a reference directions, care is needed

Try: to convert to the reference directional by reversing the reference direction for current (or voltage) Remembering to "flip" the sign at the same time.

Power Definitions

- $\mathrm{P}=\mathrm{VI}>0$ corresponds to the element absorbing power
- How can a circuit element absorb power?
- By converting electrical energy into heat (resistors in toasters), light (light bulbs), acoustic energy (speakers); by storing energy (charging a battery)
- Negative power - releasing power to the rest of the circuit.

Calculating Power

- Find the power absorbed by each element

- Element a-b, flip current direction
- Elements a-c, c-b (left), and c-b (right): reference direction

Conservation of Power

- Sum of the power absorbed by all circuit element must be zero.
- Concept: circuit elements are used to model all modes of energy conversion (heat, sound, batteries, voltage generators, etc.)
- Simple example:

$$
I=-2 \mathrm{~mA}
$$

Power released (VI <0) by the element on the left equals to the power absorbed by the element on the right.

