EECS 42 Introduction to Electronics for Computer Science

Prof. Charles T. Choi c.t.choi@ieee.org Office hours: Fri 2-4pm @ Cory 463

Charge

- Most matter are neutral (uncharged) most of the time... exceptions: clouds in thunderstorms; people on carpets in dry weather
- Unbalanced charge -> attracts charge of opposite sign; tendency to discharge.

Graduate Student Instructors:

Allie Fletcher alyson@eecs.berkeley.edu Th 10-12pm 179M Cory Melvin Tsai mtsai@ic.eecs.berkeley.edu F 12-2pm @ 179M Cory Matthew Webb webb@cory.eecs.berkeley.edu M 10-12pm at 179M

TA sections:Tu 3-4pm B1 Northgate
Tu 4-5pm 3113 Etcheverry
W 10-11am 293 Cory
Th 4-5pm 247 Cory
F 10-11am 293 Cory

Unit of Charge

- Define unit of charge: 1 mm separation, 1 charge, F=14.4X10^{-3N}... determine that a single charge is 1.609X10⁻¹⁹ Coulombs
- Bits of information stored on a chips signify the presence or absence of charge!

 Repulsion

1 charge 1 charge

force

Uses of Charge in Electronics

- Store it and detect it
 - Example: 64Mbit dynamics RAM(DRAM)
 Storage cell
 - -Q = charge stored for "1"=10-13C
 - Number of charges stored in Q/(unit charge) = 10^{-13} C/(1.609X10⁻¹⁹C/charge) = 6.25X10⁵.

Current Reference direction

Definition

$$I = \Delta q / \Delta t$$

must pick a direction in order to assign a sign to the charge...

The choice is arbitrary but mandatory(!)

- + charge moving "with the directional array" \rightarrow positive Δ q
- charge moving "opposite the directional array" \rightarrow positive Δ q (not typo!)

Conceptual Problems

How does charge move through the wire?

Drift due to electric field in the medium

Conceptual Problems

 There is no need to guess the reference direction so that the answer comes out positive... your guess won't affect what the charge carriers are doing!

Unit of Current

- Coulombs/second = Amperes (Amps)
- Current magnitudes:
 - Household wiring ... 1-20A (sinusoidal function of time)
 - Power transmission... up to kA (sinusoidal function of time)
 - Microelectronics: Currents in large integrated circuits such as microprocessors ...nA to mA (10⁻⁹ A to 10⁻³ A)

Current vs. Current Density

- Tiny currents can lead to huge current densities (Think of Car tires pressure (32psi) vs Bicycle tires pressure (80psi), pressure is force density in pound per square inches)
- Current density is equal to current divided by cross sectional area $\begin{array}{c} \bullet \\ T \end{array}$

Example:

• Area = $1\mu m X 1\mu m$ = $10^{-4} cm X 10^{-4} cm$

• I = 1mA => Current density =108A/cm²

Charge Transport

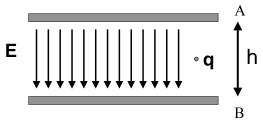
- Charge carriers at room temperature: agitated motion
 - One carrier/atom in metals: around 10²³ cm⁻³.
 - Velocity=10⁵m/s=100km/s
 - collide with atoms every 0.1ps=10⁻¹³s

Carrier Motion

- Electric Field: carriers "feel" the force F
 = qE in between collisions...results in "drift". (E = electric field)
- Without electric field: carriers motion would be purely random.

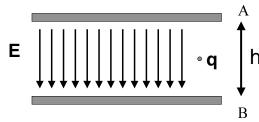
Carrier Motion

• With electric field



Remember: Electronics (negative charge) move opposite of **E**

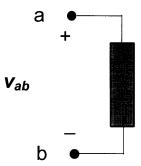
Electric Potential Energy


• Electric potential energy U:

U = qEh, q is the charge, E the electric field, h the distance electrodes A&B.

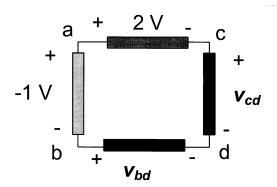
Electric Potential Energy

 Electric potential (voltage) difference or "drop" V_A - V_B = E h


 Differences: positive & negative charge; direction of E can be up or down→ we need to be systematic about signs.

Thinking about Voltage

- Potential is always referenced to some point (V_{AB} in the example; V_A is meaningless without an understood reference point)
- If a conducting path exists between A and B, charges will "drift" due to electric field → current flows
- Potential difference is present even without a conducting path.


Voltage Across an Element

 Generalized circuit element with two terminals (wires) a and b, with a potential V_{ab}

Sign Conventions

• Using the sign conventions:

Power in Electric Circuits

- Power: transfer of energy per unit time
 (Joules/second = watts)
 - Concept: potential energy change = qEhfor each charge q
 - Rate is given by the # of charges/sec
- Power = P = $\mathbf{E}h(\Delta q/\Delta t) = (\mathbf{E}h)I = VI$
- P = VI is the most common form

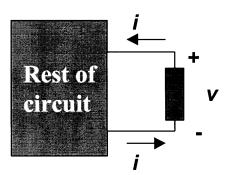
Power

- Circuit elements can "absorbs" or "release" power (that is, from or to the rest of the circuit)
- Power can be a function of time
 - Just as current or voltage can be function of time
- How to keep the signs straight for absorbing and releasing power?

Reference Directions

 It is convenient to define the current through a circuit element as positive when entering the terminal associated with the + reference for voltage

Rest of

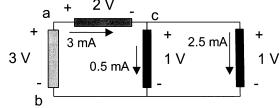

circuit

For positive current and positive voltage, positive charge "falls down" a potential "drop" in moving through the circuit element: it absorbs power.

Figuring out the Direction of Power Flow

 If the circuit element does not have a reference directions, care is needed

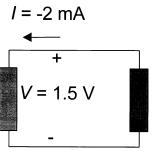
Try: to convert to the reference directional by reversing the reference direction for current (or voltage) Remembering to "flip" the sign at the same time.



Power Definitions

- P = VI > 0 corresponds to the element absorbing power
 - How can a circuit element absorb power?
- By converting electrical energy into heat (resistors in toasters), light (light bulbs), acoustic energy (speakers); by storing energy (charging a battery)
- Negative power releasing power to the rest of the circuit.

Calculating Power


Find the power absorbed by each element

- Element a-b, flip current direction
- Elements a-c, c-b (left), and c-b (right): reference direction

Conservation of Power

- Sum of the power absorbed by all circuit element must be zero.
- Concept: circuit elements are used to model all modes of energy conversion (heat, sound, batteries, voltage generators, etc.)
- Simple example:
 Power released (VI <0)</p>
 by the element on the
 left equals to the
 power absorbed
 by the element on
 the right.

