Quiz #1 September 26, 2001

Show your work so that the method can be graded for correctness and completeness and all of the points do not depend on just the final numerical value.

I (20 Points) Basic Circuit Analysis
a) For the circuit shown find V_b.

No current in the output. I_2 goes through R_1.

$$ V_b = V_1 + I_2R_1 = 2V + (1\text{mA})(1\ \text{k} \Omega) $$

$$ = 2V + 1V = 3V $$

b) Find the Thevenin resistance seen looking into the output terminals.

Turn V_1 to zero = short; Turn I_2 to zero = open

See R_2 in series with R_1

$$ R_{\text{THEVENIN}} = R_1 + R_2 = 3 \text{ k} \Omega $$

II (20 Points) Transient Analysis

The switch in the circuit to the right is opened at $t = 0$. Find and equation that describes $V_C(t)$.

$$ V_C(t) = A + Be^{-t/\tau} $$

$$ V_C(0) = \text{Voltage Divider} = V_S \frac{R_2}{(R_1+R_2)} $$

$$ = 6 \frac{(2\text{k} \Omega)/(4\text{k} \Omega+2\text{k} \Omega)) = 2V = A + B $$

$$ V_C(\text{infinity}) = V_S = 6V = A $$

Time constant $\tau = R_1C = 4\text{k} \Omega \cdot 1\text{pF} = 4 \text{ ns}$

$$ V_C(t) = 6V - 4e^{-t/4\text{ns}} $$