Lecture 4: September 10th, 2001

Circuit Elements and Equivalent Circuits

A) Capacitors
B) Inductors
C) I versus V \& Simplest Equivalent Circuit

Reading:
Schwarz and Oldham 5.1, 2.2, 3.1

Summary 1

- Capacitors: two plate example $\mathrm{Q}=\mathrm{CV}, \mathrm{I}=\mathrm{C} \mathrm{dV} / \mathrm{dt}$ and $V=(1 / C)$ integral of voltage
- Computer example 1 mA current charging 1 pF

$$
\mathrm{V}(\mathrm{t})=(\mathrm{I} / \mathrm{C}) \mathrm{t}=\left(10-3 \mathrm{~A} / 10^{-12} \mathrm{~F}\right) \mathrm{t}=10^{9} \mathrm{~V} / \mathrm{st}
$$

- At D.C. time derivatives are zero $=>\mathrm{C}$ is open circuit
- C in parallel add; series $1 / C=\operatorname{sum}\left(1 / C_{i}\right)$; short together (infinite current but conserve charge)
- Inductors: coil example Flux $=\mathrm{LI}, \mathrm{V}=\mathrm{L} \mathrm{dI} / \mathrm{dt}$ and $\mathrm{I}=(1 / \mathrm{L})$ (integral of voltage)
- At D.C. time derivatives are zero $=>\mathrm{L}$ is short circuit
- L in parallel $1 / \mathrm{L}=\operatorname{sum}\left(1 / \mathrm{L}_{\mathrm{i}}\right)$; series add; connect in series when have different currents $=>L_{1} \mathrm{I}_{1}+\mathrm{L}_{2} \mathrm{I}_{2}=\left(\mathrm{L}_{1}+\mathrm{L}_{2}\right) \mathrm{I}_{\text {NEW }}$

Summary 2

- I vs. V for ideal voltage source is a vertical line at $\mathrm{V}=\mathrm{V}_{\mathrm{SV}}$
- I vs. V for ideal current source is a horizontal line at $\mathrm{I}=\mathrm{I}_{\mathrm{SC}}$
- I vs. V for a circuit made up of ideal independent sources and resistors is a straight line.
- The simplest circuit for a straight line is an ideal voltage source and a resistor (Thevenin) or a current source and a parallel resistor (Norton)
- The easiest way to find the I vs. V line is to find the intercepts where $\mathrm{I}=0$ (open circuit voltage V_{T}) and where $\mathrm{V}=0$ (Short circuit current I_{N})
- The short-cut for finding the (slope) ${ }^{-1}=\mathrm{R}_{\mathrm{T}}=\mathrm{R}_{\mathrm{N}}$ is to turn off all of the dependent sources to zero and find the remaining equivalent resistance between the terminals of the elements.

Copyright 2001, Regents of University of California

