Lecture 7: September 19th, 2001

Charging and Discharging of RC Circuits

 (Transients)A) Mathematical Method
B) EE42 Easy Method
C) Logic
D) Generalizations
E) Pulse Distortion

The following slides were derived from those prepared by Professor Oldham for EE40 in Fall 01

Reading:

Schwarz and Oldham $8.1+$ Handouts

Charging and discharging in RC Circuits

 (continued)
Last Time:

We learned that simple the simple RC circuit with a step input has a universal exponential solution of the form:

$$
V_{\text {out }}=A+\mathrm{Be}^{-t / R C}
$$

Example: $\mathrm{R}=1 \mathrm{~K}, \mathrm{C}=1 \mathrm{pF}$, Vin steps from zero to 10 V at $\mathrm{t}=0$:

1) Initial value of Vout is 0
2) Final value of Vout is 10 V
3) Time constant is $10^{-9} \mathrm{sec}$
4) Vout reaches 0.63×10 in $10^{-9} \mathrm{sec}$

EECS 42 Intro. electronics for CS Fall 2001

$$
\begin{aligned}
& \text { RC RESPONSE: Case } 1 \text { (cont.) Version Date 9/19/01 } \\
& \text { Proof that } \mathrm{V}_{\text {out }}=\mathrm{V}_{1}\left(1-\mathrm{e}^{-t / R C}\right)
\end{aligned}
$$

$$
\begin{aligned}
i_{R} & =\frac{V_{\text {in }}-V_{\text {out }}}{R}(\text { Ohm's law }) \\
\mathrm{i}_{\mathrm{C}} & =C \frac{d V_{\text {out }}}{d t}(\text { capacitance law })
\end{aligned}
$$

But $i_{R}=i_{C}$!

$$
\begin{aligned}
& \text { Thus, } \frac{V_{\text {in }}-V_{\text {out }}}{R}=C \frac{d V_{\text {out }}}{d t} \\
& \text { or } \\
& \frac{d V_{\text {out }}}{d t}=\frac{1}{R C}\left(V_{\text {in }}-V_{\text {out }}\right)
\end{aligned}
$$

EECS 42 Intro. electronics for CS Fall 2001
Version Date 9/19/01

RC RESPONSE Case 1 (cont.)

Proof that $\mathrm{V}_{\text {out }}=V_{1}\left(1-e^{-t / R C)}\right.$
We have: $\frac{\mathrm{dV}_{\text {out }}}{\mathrm{dt}}=\frac{1}{\mathrm{RC}}\left(\mathrm{V}_{\text {in }}-V_{\text {out }}\right) \quad$ Proof by substitution:
But $\mathrm{V}_{\text {in }}=\mathrm{V}_{1}=$ constant

Constant gives \mathbf{A}.

$$
\mathrm{V}_{\text {out }}=\mathrm{V}_{1}\left(1-\mathrm{e}^{-\mathrm{t} / \mathrm{RC}}\right)
$$

Initial condition gives $\mathbf{A}+\mathrm{B}$.

$$
\mathrm{V}_{\text {out }}=0 \text { at } \mathrm{t}=0^{+} \quad \mathrm{OK}
$$

EECS 42 Intro. electronics for CS Fall 2001
Lecture 7: 9/19/01 A.R. Neureuther RC RESPONSE (cont.) Version Date 9/19/01

Generalization

Vin switches at $t=0$; then for any time interval $t>0$, in which Vin is a constant, Vout is always of the form:

$$
V_{\text {out }}=A+\mathrm{Be}^{-t / \tau}
$$

We determine A and B from the initial voltage on C, and the value of Vin. Assume Vin "switches" at $t=0$ from Vco to V1:
First, at $t=0 \quad V_{C} \equiv V_{C 0} \quad$ initial voltage
Thus, $\mathrm{A}+\mathrm{B}=\mathrm{V}_{\mathrm{Co}}$
as $\mathrm{t} \rightarrow \infty, \mathrm{V}_{\mathrm{C}} \rightarrow \mathrm{V}_{1}$
(G) Thus, $\mathrm{A}=\mathrm{V}_{1} \Rightarrow \mathrm{~B}=\mathrm{V}_{\mathrm{Co}}-\mathrm{V}_{1}$

Copyright 2001, Regents of University of California

Charging and discharging in RC Circuits

For this example: $R=1 K, C=1 p F$,

Note that we found this graph without even using the equation $V_{\text {out }}=A+B e^{-t / R C}$ (That is we did not try to evaluate A and B).
We simply used the dc solution for $\mathrm{t}<0$ and the dc solution for $\mathrm{t} \gg 0$ to get the limits and we used the time constant to get the horizontal scale. We only need the equation to remind us the solution is an exponential. So this will be the basis of our easy method.

Charging and discharging in RC Circuits (The official EE40/EE42 Easy Method)

Method of solving for any node voltage in a single capacitor circuit.

1) Simplify the circuit so it looks like one resistor, a source, and a capacitor (it will take another two weeks to learn all the tricks to do this.) But then the circuit looks like this:
2) The time constant of the transient is $\tau=\mathrm{RC}$.
3) Solve the dc problem for the capacitor voltage before the transient. This is the starting value (initial value) for the transient voltage.
4) Solve the dc problem for the capacitor voltage after the transient is over. This is the asymptotic value.
5) Sketch the Transient. It is 63% complete after one time constant.
6) Write the equation by inspection.

EECS 42 Intro. electronics for CS Fall 2001

Charging and discharging in RC Circuits (Example 1 of the EE42 Easy Method)

Find $\mathrm{Vc}(\mathrm{t})$ for the following circuit: (input switches from 2 V to -1 V at $\mathrm{t}=0$)

1) Simplify the circuit :

2) The time constant of the transient is $\tau=\mathrm{RC}=20 \mathrm{nsec}$

3) After the transient is over Vin $=-1 \mathrm{~V}$ so $\mathrm{Vc}=-1 \mathrm{~V}$. This is the asymptotic value.

Copyright 2001, Regents of University of California

EECS 42 Intro. electronics for CS Fall 2001

Charging and discharging in RC Circuits (Example 1 of the EE42 Easy Method)

Find $\mathrm{Vc}(\mathrm{t})$ for the following circuit: (input switches from 2 V to -1 V at $\mathrm{t}=0$)
We have : Initial value of Vc is 2 V , final value is -1 V and $\tau=20 \mathrm{nsec}$
5) Sketch Vc (t) :

What is the equation for an exponential beginning at 2 V , decaying to -1 V , with $\tau=20 \mathrm{nsec}$?

37\% of transient remaining at one time constant

OUR METHOD AVOIDS ALL MATH!

* Sketch waveform (starts at Vco, ends asymptotically at V1, initial slope intersects at $t=R C$ or transient is 63% complete at $t=R C$)
* Write equation: 2a. constant term $\mathrm{A}=\operatorname{limit}$ of V as $\mathrm{t} \rightarrow \infty$

2b. pre-exponent $B=$ initial value - constant term

Copyright 2001, Regents of University of California

EECS 42 Intro. electronics for CS Fall 2001 4 Examples

Lecture 7: 9/19/01 A.R. Neureuther
Version Date 9/19/01

$$
\mathrm{V}_{\text {out }}=\mathrm{A}+\mathrm{Be}^{-\mathrm{t} / \mathrm{RC}}
$$

$\mathrm{V}_{1}=10$

Copyright 2001, Regents of University of California

EECS 42 Intro．electronics for CS Fall 2001
Lecture 7：9／19／01 A．R．Neureuther

COMPLICATION：Event Happens at ${ }^{\mathrm{N} ⿻ 丷 ⿻ 二 丨 䒑 口 s i g n ~ D a t e ~ 9 / 19 / 01 ~}$

 （Solution：Shift reference time to time of event）

We shift the time axis here by one microsecond，i．e． imagine a new time coordinate $\mathrm{t}^{*}=\mathrm{t}-1 \mu \mathrm{sec}$ so that in the new time domain，the event happens at $\mathrm{t}^{*}=0$ and our standard solution applies．Of course we replace t^{*} by $t-1 \mu \mathrm{sec}$ in the equations and plots．Thus instead of $\mathrm{t}^{*}=0$ we have $\mathrm{t}=1 \mu \mathrm{sec}$ ，etc．

Copyright 2001，Regents of University of California

FINAL EXAMPLE

Your photo flash charges a $1000 \mu \mathrm{~F}$ capacitor from a 50 V source through a 2 K resistor. If the capacitor is initially uncharged, how long must you wait for it to reach 95% charged (47.5 V)?

Solution: $\mathrm{RC}=2 \mathrm{~K} \times 10^{-3}=2 \mathrm{sec}$

By inspection: $V_{o}=50-50 e^{-t / 2}$, so

$47.5=50\left(1-\mathrm{e}^{-\frac{\mathrm{t}_{\mathrm{x}}}{2}}\right) \Rightarrow e^{-\frac{t_{x}}{2}}=\left(1-\frac{47.5}{50}\right) \Rightarrow \quad \mathrm{t}_{\mathrm{x}}=6 \mathrm{sec}$

Generalizations

- Switching of circuits with multiple resistors and sources
- use \mathbf{R}_{T} seen looking back into the circuit from the terminals of the capacitor after the switching changes conditions.
- Inductor circuits use $\tau=\mathbb{L} / \mathbb{R}_{\mathrm{T}}$

Pulse Distortion

An example of RC analysis

> Rule: The pulse width must be wider than RC to avoid severe pulse distortion.

Example: Lets find the shape of the output pulse for pulse width of 0.1, 1, and 10 RC

Method: Use 5 V pulse height. Let $\mathrm{RC}=1 \mu \mathrm{sec}$. Replace voltage source with a switch which shorts the input to ground for $\mathrm{t}<0$, switches to 5 V at $\mathrm{t}=0$, and switches back to ground at $\mathrm{t}=0.1 \mu \mathrm{sec}$, or $t=1 \mu \mathrm{sec}, \mathrm{t}=10 \mu \mathrm{sec}$.

Thus we have two problems: \#1: $\mathrm{V}_{\text {out }}$ rising from zero and $\# 2$: $\mathrm{V}_{\text {out }}$ falling back toward zero. Cascade solutions!

PULSE: Output is Rising exponentǐars ${ }^{\text {sion Date } 9 / 19 / 01}$ then Falling exponential

Example: Switch rises at $\mathrm{t}=0$, falls at t $=0.1,1$ or $10 \mu \mathrm{sec}$ (Do $1 \mu \mathrm{sec}$ case)

Solution: for $\mathrm{RC}=1 \mu \mathrm{sec}$:
during the first rise V obeys:

$$
V=5\left[1-e^{\frac{-t}{10^{-6}}}\right]
$$

Thus at $\mathrm{t}=1 \mu \mathrm{sec}$, rising voltage reaches

$$
5\left[1-\mathrm{e}^{-1}\right]=3.16 \mathrm{~V}
$$

Now starting at $1 \mu \mathrm{sec}$ we are discharging the capacitor so the form is a falling exponential with initial value 3.16 V :

What is equation?

EECS 42 Intro. electronics for CS Fall 2001
Lecture 7: 9/19/01 A.R. Neureuther PULSE DISTORTION - other caSersion Date 9/19/01

Switch rises at $t=0$, falls at $t=0.1$ or $10 \mu \mathrm{sec}$ (i.e. 0.1 or $10 \mu \mathrm{sec}$ pulse widths)

Solve for $\mathrm{V}_{\text {out }}$ in the other two cases (0.1 or $10 \mu \mathrm{sec}$) just as for $1 \mu \mathrm{sec}$

At $t=0.1 \mu \mathrm{sec}$ the output has only risen to 0.5 V !

Whereas for $10 \mu \mathrm{sec}$ pulse width, output reaches to within 0.995 \% of 5 V .
You need to verify the numbers! ${ }^{0} \quad \begin{array}{ccccc}5 & \begin{array}{cc}10 & 15\end{array} & 20 & 25 \\ \text { time (microseconds) }\end{array}$
Copyright 2001, Regents of University of California

An example of RC analysis

$P W=10 R C$

$P W=R C$
$P W=0.1 R C$

Copyright 2001, Regents of University of California

