## REMINDER

Midterm Oct. 3, 3:10-4:03 PM
Closed Book, Closed Notes, Bring Calculator, Paper Provided Last Name A-K 2040 Valley LSB; Last Name L-Z in 10 Evans

Old Exams Are Posted on Web
Review Session 5-6:30 Tu 2060 Valley LSB
EE 43 Labs Are Not Cancelled:
Students in Tu 6-8PM should go to a different section during $6^{\text {th }}$ week.

Professor Neureuther will not be available Wed. Oct $3^{\text {rd }}$-Fri Oct. $5^{\text {th }}$ due to a Conference

## Logic Implementation and Synthesis

 A)Logic Levels and Gate Circuits B) Combination of Logic Functions C) Synthesis from a Truth Table D)NAND Gate Synthesis E) XOR and Introduction to TimingReading:
The following slides were derived from those prepared by Professor Oldham For EE 40 in Fall 01 Schwarz and Oldham 11.2-11.3 pp. 403-422

## Logic Gates - How are they used in practice?



First of all we must agree on what is High (logical 1) or low (logical $\mathbf{0}$ ). Suppose 1.5 V is $\mathbf{1}$ and 0 V is logical $\mathbf{0}$.


EECS 42 Intro. electronics for CS Fall 2001
Lecture 10: 10/01/01 A.R. Neureuther
Version Date 11/01/01
Logic Gates - How are they built in practice?


## The most common basic gates are NAND and NOR?

Not-AND = NAND


| A | B | AB | $\overline{\mathrm{AB}}$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 0 |

Not-OR = NOR


Copyright 2001, Regents of University of California

EECS 42 Intro. electronics for CS Fall 2001
Lecture 10: 10/01/01 A.R. Neureuther How to Combine Gate to Produce a Desired Logic Function? 11 (More basic Logical Synthesis)

$$
\mathrm{F}=\mathrm{A} \cdot \mathrm{~B}
$$



Again a little shorthand is useful


## How to Combine Gate to Produce a Desired Logic Function? (More basic Logical Synthesis)

Suppose we are given a truth table (all logic statements can be represented by a truth table). How can we implement the function?

Answer: There are lots of ways, but one simple way is implementation from "sum of products" formulation.

How to do this: 1) Write sum of products expression from truth table and 2) Implement using standard gates.
(Warning this is probably inefficient - we need to minimize, or simplify the expression. You will learn this in CS 150.)

## How to Combine Gate to Produce a Desired Logic Function?

 (More basic Logical Synthesis)Example:
Clearly: $\mathrm{F}=1$ if

| $A$ | $B$ | $C$ | $F$ |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 |$\quad$ or $\overline{\mathrm{B}} \overline{\mathrm{C}}=1$

How to Combine Gate to Produce a Desired Logic Function? (More basic Logical Synthesis)
Example:

| $A$ | $B$ | $C$ | $F$ |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 |


$\mathrm{F}=\overline{\mathrm{A}} \overline{\mathrm{B}} \mathrm{C}+\mathrm{AB} \overline{\mathrm{C}}$

## Logical Synthesis Guided by DeMorgan's Theorem

DeMorgan's Theorem :

$$
\mathrm{A}+\mathrm{B}+\mathrm{C}=\overline{[\overline{\mathrm{A}} \overline{\mathrm{~B}} \overline{\mathrm{C}}]} \quad \text { or } \quad \overline{\mathrm{A}}+\overline{\mathrm{B}}+\overline{\mathrm{C}}=\overline{[\mathrm{A} \mathrm{~B} \mathrm{C}]}
$$

Example of Using DeMorgan's Theorem:


Copyright 2001, Regents of University of California

EECS 42 Intro. electronics for CS Fall 2001
Lecture 10: 10/01/01 A.R. Neureuther
Version Date 11/01/01

## Logical Synthesis of XOR

| $A$ | $B$ | $F$ |
| :--- | :--- | :--- |
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

$$
\mathrm{F}=\mathrm{A} \bullet \mathrm{~B}+\mathrm{A} \bullet \mathrm{~B}
$$

We Need a Timing Diagram!
Delay 1 Delay 2


Copyright 2001, Regents of University of California

Timing Diagram for Delays in Logic


Copyright 2001, Regents of University of California

