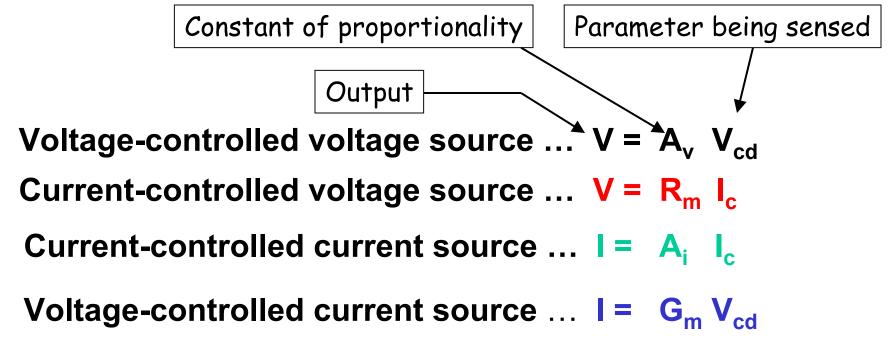
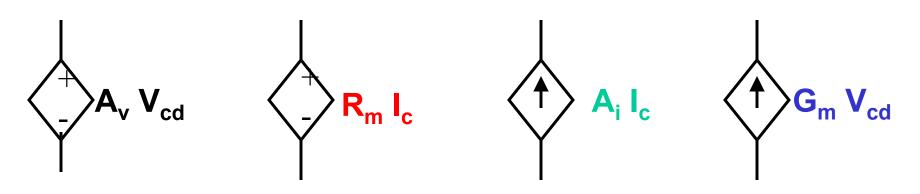
Lecture 13: October 15, 2001

Circuit Analysis with Dependent Sources

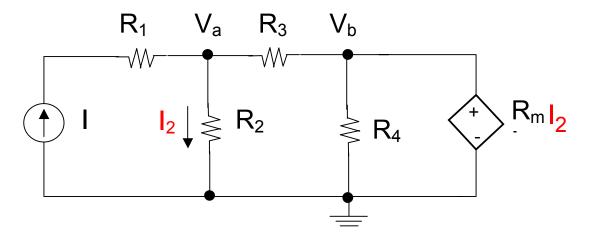
- A) Node Equations
- B) Equivalent Sources
- C) Amplifier Parameters:

Gain, R_{IN}, R_{OUT}


D) Non-Ideal Op-Amp Model


The following slides were derived from those prepared by Professor Oldham For EE 40 in Fall 01

Reading:


Schwarz and Oldham 4.1 - 4.2

The 4 Basic Linear Dependent Sources

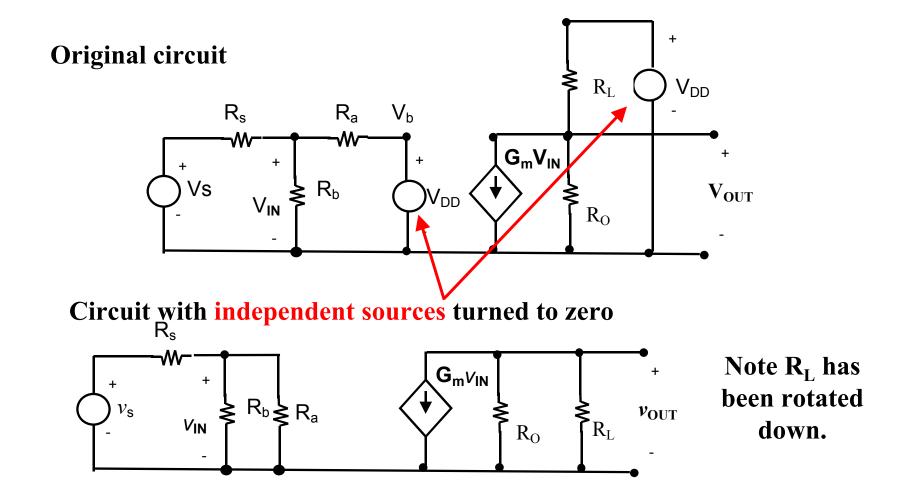
EXAMPLE OF NODAL ANALYSIS WITH DEPENDENT SOURCES

Standard technique, except an additional equation is needed if the dependent variable is an unknown current as here. Note Vb is redundant.

$$I = V_a / R_2 + (V_a - R_m |_2) / R_3 \text{ and } |_2 = V_a / R_2$$
Solving:
$$I = V_a (1/R_2 + 1/R_3 - R_m / R_2 R_3)$$
So $V_a = I R_2 R_3 / (R_2 + R_3 - R_m)$

Copyright 2001, Regents of University of California

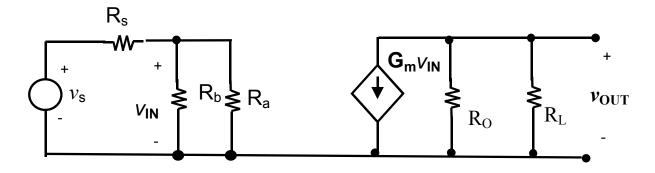
THEVENIN EQUIVALENT WITH DEPENDENT SOURCES


Method 1: Use V_{oc} and I_{sc} as usual to find V_{T} and R_{T} (and I_{N} as well)

Method 2: To find R_T by the "ohmmeter method" turn off only the *independent* sources; let the dependent sources just do their thing.

See examples in text (such as Example 4.3).

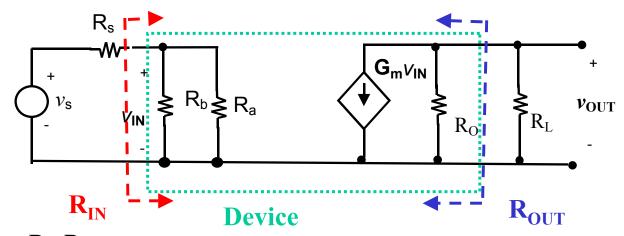
This method also works when computing incremental signals such as a change in the source V_S (given by ΔV_S or v_S) produces a change in V_{IN} or V_{OUT} , (given by ΔV_{IN} or ΔV_{OUT} also written v_{IN} and v_{OUT}), and their ratio called the small-signal gain (ΔV_{OUT} / ΔV_S) or (v_{OUT} / v_S)


EXAMPLE CIRCUIT WITH MULTIPLE SOURCES

Lecture 14: 10/15/01 A.R. Neureuther

Version Date 10/16/01

EXAMPLE CIRCUIT: GAIN = $(\Delta V_{OUT} / \Delta V_{S}) = (v_{OUT} / v_{S})$



$$R_{IN} = \frac{R_a R_b}{R_a + R_b} \qquad v_{IN} = \frac{R_{IN}}{R_S + R_{IN}} v_s$$

$$v_{OUT} = -G_{m}v_{IN}\frac{R_{O}R_{L}}{R_{O} + R_{L}} = -G_{m}\frac{R_{IN}}{R_{S} + R_{IN}}\frac{R_{O}R_{L}}{R_{O} + R_{L}}v_{S}$$

Input voltage divider and output current divider reduce the gain

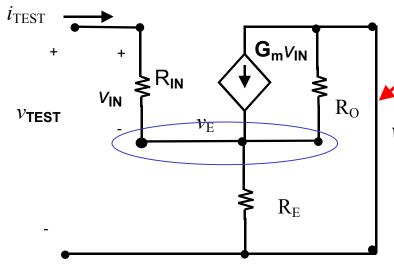
EXAMPLE CIRCUIT: INPUT/OUTPUT RESISTANCE

$$R_{IN} = \frac{R_a R_b}{R_a + R_b}$$

Output does not feed back to input

$$R_{OUT} = R_O$$

Assume $v_S = 0 \Rightarrow v_{IN} = 0 \Rightarrow no$ current in dependent source


Can circuit design improve R_{IN} and R_{OUT} or do we need better devices?

Lecture 14: 10/15/01 A.R. Neureuther

Version Date 10/16/01

EXAMPLE CIRCUIT: INCREASED INPUT RESISTANCE

The output has been assumed to be shorted

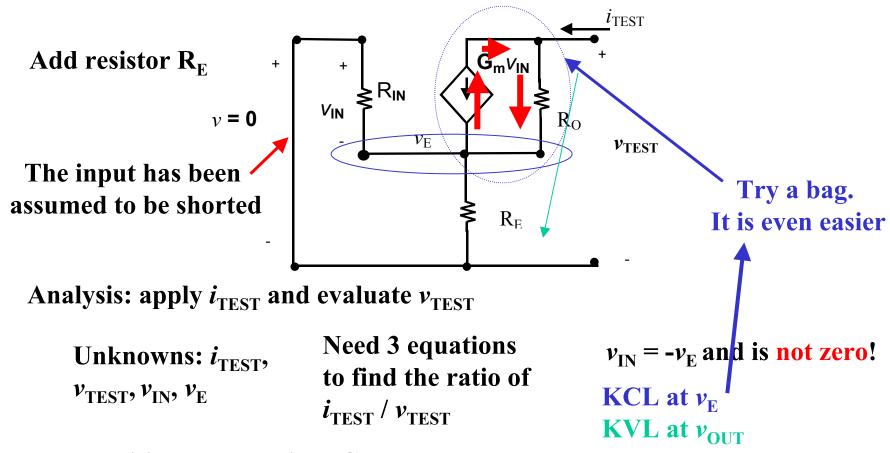
Analysis: apply i_{TEST} and evaluate v_{TEST}

$$v_{IN} = R_{IN}i_{TEST}$$
 $v_{TEST} = R_{IN}i_{TEST} + v_{E}$
 v_{E} v_{E} .

 $\frac{\mathbf{KCL}}{R_E} + \frac{v_E}{R_0} - i_{TEST} - G_m R_{IN} i_{TEST} = 0$

case for R_0 infinite i_{TEST}

Check for special
$$\frac{\vec{v}_{TEST}}{i_{TEST}} = R_{IN} + (1 + G_m R_{IN}) R_E$$
 case for R_0 infinite i_{TEST}


Finish this in the homework

◄... Intuitive Explanation:

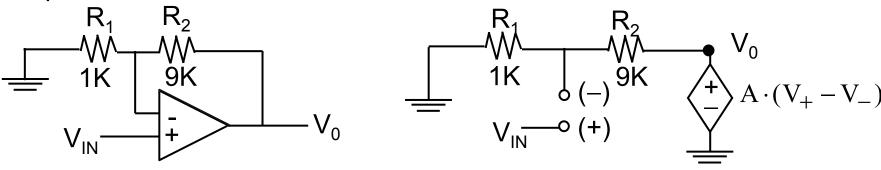
R_E puts R_{IN} on a node whose voltage increases in response to current in R_{IN}.

Copyright 2001, Regents of University of California

EXAMPLE CIRCUIT: INCREASED OUTPUT RESISTANCE

Intuitive Explanation: GmV_{IN} burps current which has to also go through R_0 . This raises v_{TEST} and the output impedance v_{TEST}/i_{TEST}

Finish this in the homework


NON-IDEAL OP-AMPS

Version Date 10/16/01

JUST ANOTHER CASE OF ANALYSIS WITH DEPENDENT SOURCES

Analysis:

Outline your circuit analysis strategy here.

Hint: 1) Find V_{-} in terms of V_{0} , 2) plug into expression for V_{0} and then 3) solve for V_{0} which appears on both sides of the equation.

Answer:

$$V_0 = V_{IN} \frac{A(R_1 + R_2)}{(A+1)R_1 + R_2} \cong V_{IN} \frac{R_1 + R_2}{R_1} = 10V_{IN}$$

if $A \to \infty$

Copyright 2001, Regents of University of California