Lecture 14: October 17, 2001

Op-Amp Circuits and Comprators A)Cascade Op-Amps B)Integration/Differentiation Op-Amps C)I vs. V of Op-Amps – Source Limits D)Comparator Circuits E)D to A Converters

The following slides were derived
from those prepared by Professor
Oldham For EE 40 in Fall 01Schwarz and Oldham 4.3-4.4 (light on
non-ideal) and comparator viewgraphs

CASCADE OP-AMP CIRCUITS

How do you get started on finding V₀?

Hint: Identify Stages

Hint: I_{IN} does not affect V_{O1}

See the further examples of op-amp circuits in the reader

INTEGRATING OP-AMP

How do you get started on finding V₀?

Hint: $i_{IN} \cong 0$ and $V_{(-)} \cong V_+ = 0$

Hint: KCL at V_node with I_{IN} = 0

 V_0

Version Date 10/16/01

OP-AMP I-V CHARACTERISTICS WITH RAILS

- Circuit model (ideal op-amp) gives the essential linear part
- But V_0 cannot rise above some physical voltage related to the positive power supply V_{CC} (" upper rail") $V_0 < V_{+RAIL}$
- And V_0 cannot go below most negative power supply, V_{EE} i.e., limited by lower "rail" $V_0 > V_{-RAIL}$

Example: Amplifier with gain of 10^5 , with max V₀ of 3V and min V₀ of -3V.

Copyright 2001, Regents of University of California

OP-AMP I-V CHARACTERISTICS WITH RAILS (cont.)

SIMPLE A/D CONVERTER

I-V with equal X and Y axes

Note:

- (a) displays linear amplifier behavior ($|V_{IN}| < 30 \ \mu V$) and stops at rails
- (b) shows comparator decision function (1 bit A/D converter centered at V_{IN} = 0) where lower rail = logic "0" and upper rail = logic "1"

OP-AMP USE AS COMPARATOR (A/D) MODE

Simple comparator with threshold at 1V. Design lower rail at 0V and upper rail at 2V (logic "1"). A = large (e.g. 10² to10⁵)

NOTE: The actual diagram of a comparator would not show an amplifier with "offset" power supply as above. It would be a simple triangle, perhaps with the threshold level (here 1V) specified.

(e.g., halfway between rails) and comparator output goes to +rail if $V_{IN} > V_{THRESHOLD}$ and to –rail if $V_{IN} < V_{THRESHOLD}$.

What would this circuit do?

The inverse pulse shaped function is generated by applying the input voltage to V- and setting V+ to the threshold voltage.

D/A CONVERSION

Version Date 10/16/01

CHARACTERISTIC OF A 4-BIT DAC

