Lecture 15: October 22, 2001 Reminder:

20 Minute Quiz Wed. Oct. 31 in class 2nd Midterm Wed. Nov. 7 in class Logic with a State Dependent Device A)State Dependent Device I_{OUT} vs. V_{OUT} **B)**Load Line Analysis for Logic Levels **C)**Voltage Transfer Characteristics $VTC = plot of V_{OUT} vs. V_{IN}$ D) 42 Pull Down (42PD) Device and Logic **Reading:**

Schwarz and Oldham pp. 593-595, 604-606 (read for graphs and not physics)

Logic Gates – How are they built in practice?

Digital Logic from State-Dependent Three-Terminal Devices

Three-terminal devices such as MOS transistors have characteristics (such as I_{OUT} vs. V_{OUT} curves) on the output side that can be programmed by changing signals on the input side (such as the input voltage).

The input can thus be viewed as changing or programming the 'State' of the output of the device.

Three-terminal devices whose 'State' can be programmed can be used to make digital logic devices for computers that respond to input signals.

State-Dependent Three-Terminal Device Element

State-Dependent Device IOUT vs. VOUT

Copyright 2001, Regents of University of California

Three-Terminal Device Logic Circuit

Thevenin Model For Pull-Up Device

Thevenin Model For Pull-Up Device

Copyright 2001, Regents of University of California

Version Date 10/22/01 Composite Current Plot for the Logic Circuit Three-Terminal Device Plus Load Line for the Pull-Up Device

Voltage Transfer Function: V_{OUT} vs. V_{IN}

The V_{OUT} vs. V_{IN} characteristic is another view of the logic gate that is used to determine the inverting and noninverting nature of a gate.

Copyright 2001, Regents of University of California

Copyright 2001, Regents of University of California

42Pull-Down Device Model I_{OUT} vs. V_{OUT}

Copyright 2001, Regents of University of California

42Pull-Down Device Equations Describe I_{OUT} as function of V_{IN} and V_{OUT}

Cut-off $V_{IN} \le V_T = 1V$ $I_{OUT} = 0$ Values shown for $V_T = 1V$ and $k = 25 \ \mu A/V^2$

Linear (with V_{OUT}) $V_{IN} \le V_T = 1V$ $V_{OUT} \le V_T = 1V$

$$I_{OUT} = k (V_{IN} - V_T) V_{OUT} = 25 \frac{\mu A}{V^2} (V_{IN} - 1) V_{OUT}$$

Saturation (with V_{OUT}) $V_{IN} \le V_T = 1V$ $V_{OUT} \ge V_T = 1V$

$$I_{OUT} = k (V_{IN} - V_T) V_T = 25 \frac{\mu A}{V} (V_{IN} - 1) V_T$$

Composite Current Plot for the 42PD Circuit

Copyright 2001, Regents of University of California

Composite Current Plot for the 42PD Circuit with 200kΩ Load to Ground

Copyright 2001, Regents of University of California

Voltage Transfer Function for the 42PD Logic Circuit w/wo Load

Copyright 2001, Regents of University of California