Lecture 16: October 24, 2001

Logic with Complementary State Devices
A) Discovering a Pull-Up Device
B) Designing a Pull-Up Device
C) EE 42 Pull-Up Device Model (42PU)
D) Composite I_{OUT} vs. V_{OUT}
E) Voltage Transfer Function and V_M

Reading:
Schwarz and Oldham pp. 607-611 (read for graphs and not device equations) and lecture viewgraphs
Composite Current Plot for the 42PD Circuit with 200kΩ Load to Ground

Problem #1
Current when V_{OUT} Low

Problem #2
Poor V_{OUT} High with Load

$V_{THEVENIN}$ (200KΩ Load) = 3.3 V

Copyright 2001, Regents of University of California
Problems and Opportunities in Logic Circuit Design

Problem #1: Significant wasted current and power when \(V_{OUT} \) is low.

Problem #2: High value of \(V_{OUT} \) is adversely affected by a load resistor.

Missed Opportunity: The value of the input control signal is not used to adjust the state of the pull-up device.

What if: If the pull-up device could be a state-dependent device what kind of device would we want?
Pull-Up Device Design: Trial 1

Similar pull-up and pull-down states

Problem #1 is worse! There is even more wasted current and power than before when V_{OUT} is low because both devices are on at the same time.

Look for a more Complementary approach.

State 1

State 3

State 5

$I_{OUT}(\mu A)$

$V_{OUT}(V)$
Pull-Up Device Design: Trial 2

Complementary pull-up and pull-down states

Note that in the pull-down case the current increases with the state number and in the pull-up case it decreases.

Problem #1 is solved. There is essentially no wasted current or power when V_{OUT} is low.

State 1

Copyright 2001, Regents of University of California
Pull-Down and Pull-Up Must Complement Rather Than Fight Each Other

Input for State Control Signal

Share Same Signal

Input for State Control Signal

Reduce the Short-Circuit Current by making either one or the other device off.

Charging Current

Discharging Current

Copyright 2001, Regents of University of California
Desirable Complementary Device Characteristics

We desire characteristics that are **complementary** for the pull-down and pull-up state-dependent devices.

<table>
<thead>
<tr>
<th>V_{IN}</th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pull-Down Current</td>
<td>Low not leak</td>
<td>High Discharge Output</td>
</tr>
<tr>
<td>Pull-Up Current</td>
<td>High Charge Output</td>
<td>Low not leak</td>
</tr>
</tbody>
</table>
Designing the Complementary Device

The curve sets are very similar but have two key changes.

The creation of current with input State \(V_{IN} \) is reverse ordered (and also shifted).

The dependence on \(V_{OUT} \) is reverse ordered and shifted by \(V_{DD} \).
42 Pull-Down Device Equations

Describe I_{OUT} as function of V_{IN} and V_{OUT}

Cut-off

$V_{IN} \leq V_{TD}$

$I_{OUT-PD} = 0$

Linear (with V_{OUT})

$V_{IN} \geq V_{TN}$ \hspace{1cm} $V_{OUT} \leq V_{TD}$

$I_{OUT-PD} = k_{D} (V_{IN} - V_{TD}) V_{OUT}$

Saturation (with V_{OUT})

$V_{IN} \geq V_{TD}$ \hspace{1cm} $V_{OUT} \geq V_{TD}$

$I_{OUT-PD} = k_{D} (V_{IN} - V_{TD}) V_{TD}$
Drawing I_{OUT} as function of V_{IN} and V_{OUT}

for the 42Pull-Down Device Equations

The equations are expressly designed for EE42 to make it very simple to draw I_{OUT} vs. V_{OUT}

1) For $V_{\text{IN}} < V_{\text{TD}}$, the current is zero.

2) For $V_{\text{IN}} > V_{\text{TD}}$, first evaluate the current I_{OUT} at $V_{\text{OUT}} = V_{\text{TD}}$ and plot the single point $(I_{\text{OUT}}, V_{\text{OUT}})$

3) Draw a line from this point to the origin to create the linear region.

4) Draw a horizontal line from this point to create the saturation region
$V_{DD}-V_X$ Gives Complementary Characteristics

Physical Interpretation as device related rather than logic circuit related voltages.

$V'_{IN} = V_{DD}-V_{IN}$

$V'_{OUT} = V_{DD}-V_{OUT}$

Copyright 2001, Regents of University of California
42 Pull-Up Device Equations

I_{OUT} as function of V_{IN} and V_{OUT} in the Logic Circuit

Cut-off \[V_{DD} - V_{IN} \leq V_{TU} \]

\[I_{OUT-PU} = 0 \]

Linear (with V_{OUT}) \[V_{DD} - V_{IN} \geq V_{TU} \]

\[V_{DD} - V_{OUT} \leq V_{TU} \]

\[I_{OUT-PU} = k_u (V'_{IN} - V_{TU})V'_{OUT} = k_u (V_{DD} - V_{IN} - V_{TU})(V_{DD} - V_{OUT}) \]

Saturation (with V_{OUT}) \[V_{DD} - V_{IN} \geq V_{TU} \]

\[V_{DD} - V_{OUT} \geq V_{TU} \]

\[I_{OUT-PU} = k_u (V'_{IN} - V_{TU})V'_{TU} = k_u (V_{DD} - V_{IN} - V_{TU})V_{TU} \]

Note: \[V_{IN}' = V_{DD} - V_{IN} \]
42 Pull-UP Device Model

I_{OUT} vs. V_{OUT}

Evaluating the point where $V_{OUT} = V_{DD} - V_{TU}$ for a given V_{IN} allows the entire curve to be sketched.
Composite \(I_{\text{OUT}} \) vs. \(V_{\text{OUT}} \) to Find Points That Satisfies Both Devices for Each \(V_{\text{IN}} \)
Voltage Transfer Function for the Complementary Logic Circuit

Vertical section due to zero slope of I_{OUT} vs. V_{OUT} in the saturation region of both devices.

Complete this VTC for the 42PD device in the Homework.
Method for Finding V_M

At V_M,

1) $V_{OUT} = V_{IN} = V_M$

2) Both devices are in saturation

3) $I_{OUT_PD} = I_{OUT_PU}$

\[I_{OUT_PD} = k_D (V_{IN} - V_{TD}) V_{TD} = I_{OUT_PU} = k_U (V_{DD} - V_{IN} - V_{TU}) V_{TU} \]

Substitute V_M

Solve for V_M

Example Result: When $k_D = k_P$ and $V_{TD} = V_{TU}$, $V_M = V_{DD}/2$