Lecture 16: October 24, 2001
Logic with Complementary State Devices A) Discovering a Pull-Up Device B) Designing a Pull-Up Device C) EE 42 Pull-Up Device Model (42PU)
D) Composite $\mathrm{I}_{\text {OUt }}$ vs. $\mathbf{V}_{\text {OUT }}$ E) Voltage Transfer Function and $\mathbf{V}_{\mathbf{M}}$ Reading:

Schwarz and Oldham pp. 607-611 (read for graphs and not device equations) and lecture viewgraphs

EECS 42 Intro. electronics for CS Fall 2001
Lecture 16: 10/24/01 A.R. Neureuther
Version Date 10/23/01

Composite Current Plot for the 42PD Circuit with $200 \mathrm{k} \Omega$ Load to Ground

Copyright 2001, Regents of University of California

Problems and Opportunities in Logic Circuit Design

Problem \#1: Significant wasted current and power when $\mathrm{V}_{\text {out }}$ is low.
Problem \#2: High value of $V_{\text {OUT }}$ is adversely affected by a load resistor.

Missed Opportunity: The value of the input control signal is not used to adjust the state of the pull-up device.

What if : If the pull-up device could be a state-dependent device what kind of device would we want?

Pull-Up Device Design: Trial 1

Similar pull-up and pull-down states

Copyright 2001, Regents of University of California

Pull-Up Device Design: Trial 2

Complementary pull-up and pull-down states

Copyright 2001, Regents of University of California

Version Date 10/23/01

Pull-Down and Pull-Up Must Complement

 Rather Than Fight Each Other ${ }_{\text {Reduce the Short- }}$ Circuit Current

Copyright 2001, Regents of University of California

Desirable Complementary Device Characteristics

We desire characteristics that are complementary for the pull-down and pull-up

$\mathbf{V}_{\text {IN }}$	Low	High
Pull-Down Current	Low not leak	High Discharge Output
Pull-Up Current	High Charge Output	Low not leak

Designing the Complementary Device

Make This

Into This

The curve sets are very similar but have two key changes.
The creation of current with input State ($\mathrm{V}_{\text {IN }}$) is reverse ordered (and also shifted).
The dependence on $\mathbf{V}_{\text {OUT is }}$ reverse ordered and shifted by $\mathbf{V}_{\text {DD }}$

42Pull-Down Device Equations
 Describe $\mathbf{I}_{\text {OUT }}$ as function of $\mathbf{V}_{\text {IN }}$ and $\mathbf{V}_{\text {OUT }}$

Cut-off $\quad V_{I N} \leq V_{T D}$

$$
I_{O U T-P D}=0
$$

Linear (with $\mathbf{V}_{\text {OUT }}$) $\quad V_{I N} \geq V_{T N} \quad V_{O U T} \leq V_{T D}$

$$
I_{O U T-P D}=k_{D}\left(V_{I N}-V_{T D}\right) V_{O U T}
$$

Saturation (with $\mathbf{V}_{\text {OUT }}$) $\quad V_{I N} \geq V_{T D} \quad V_{O U T} \geq V_{T D}$

$$
I_{O U T-P D}=k_{D}\left(V_{I N}-V_{T D}\right) V_{T D}
$$

Drawing $I_{\text {OUT }}$ as function of $V_{\text {IN }}$ and $V_{\text {OUT }}$ for the 42Pull-Down Device Equations

The equations are expressly designed for EE42 to make it very simple to draw $I_{\text {OUT }}$ vs. $V_{\text {OUT }}$

1) For $V_{I N}<V_{T D}$, the current is zero.
2) For $V_{I N}>V_{T D}$, first evaluate the current $\mathrm{I}_{\text {OUT }}$ at $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {TD }}$ and plot the single point ($\mathrm{I}_{\text {oUt }}, \mathrm{V}_{\text {OUT }}$)
3) Draw a line from this point to the origin to create the linear region.
4) Draw a horizontal line from this point
 to create the saturation region

$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{X}}$ Gives Complementary Characteristics

Physical Interpretation as device related rather than
logic circuit related voltages.

Copyright 2001, Regents of University of California

42Pull-Up Device Equations

$I_{\text {OUT }}$ as function of $V_{\text {IN }}$ and $V_{\text {OUT }}$ in the Logic Circuit
Based on: $\mathbf{V}_{\text {TU }}$ and \mathbf{K}_{U}
Cut-off $\quad V_{D D}-V_{I N} \leq V_{T U}$

$$
\text { Note: } V_{I N}^{\prime}=V_{D D}-V_{I N}
$$

$$
I_{O U T-P U}=0
$$

$$
V_{O U T}^{\prime}=V_{D D}-V_{O U T}
$$

Linear (with $\mathbf{V}_{\mathbf{O U T}}$) $\quad V_{D D}-V_{I N} \geq V_{T U} \quad V_{D D}-V_{O U T} \leq V_{T U}$

$$
I_{O U T-P U}=k_{U}\left(V_{I N}^{\prime}-V_{T U}\right) V_{O U T}^{\prime}=k_{U}\left(V_{D D}-V_{I N}-V_{T U}\right)\left(V_{D D}-V_{O U T}\right)
$$

Saturation (with $\mathbf{V}_{\mathbf{O U T}}$) $V_{D D}-V_{I N} \geq V_{T U} \quad V_{D D}-V_{O U T} \geq V_{T U}$

$$
I_{O U T-P U}=k_{U}\left(V_{I N}^{\prime}-V_{T U}\right) V_{T U}^{\prime}=k_{U}\left(V_{D D}-V_{I N}-V_{T U}\right) V_{T U}
$$

42Pull-UP Device Model

 $I_{\text {OUT }}$ vs. $V_{\text {OUT }}$

20

Copyright 2001, Regents of University of California

Composite $\mathrm{I}_{\text {OUT }}$ vs. $\mathrm{V}_{\text {OUT }}$ to Find Points That Satisfies Both Devices for Each $\mathrm{V}_{\text {IN }}$

Copyright 2001, Regents of University of California

Voltage Transfer Function for the Complementary Logic Circuit

Method for Finding $\mathbf{V}_{\mathbf{M}}$

At V_{m},

1) $V_{\text {OUT }}=V_{\text {IN }}=V_{M}$
2) Both devices are in saturation
3) $\mathbf{I}_{\text {OUT PD }}=I_{\text {OUt-PU }}$
$I_{O U T-P D}=k_{D}\left(V_{I N}-V_{T D)}\right) V_{T D}=I_{\text {OUT-PU }}=k_{U}\left(V_{D D}-V_{I N}\right) V_{T U}$
Solve for \mathbf{V}_{M}
Example Result: When $\mathrm{k}_{\mathrm{D}}=\mathrm{k}_{\mathrm{P}}$ and $\mathbf{V}_{\mathrm{TD}}=\mathbf{V}_{\mathrm{TU}}, \mathbf{V}_{\mathrm{M}}=\mathbf{V}_{\mathrm{DD}} / \mathbf{2}$
