Lecture 16: October 24, 2001

Logic with Complementary State Devices A) Discovering a Pull-Up Device **B)** Designing a Pull-Up Device C) EE 42 Pull-Up Device Model (42PU) **D)** Composite I_{OUT} vs. V_{OUT} **E)** Voltage Transfer Function and V_M **Reading:**

Schwarz and Oldham pp. 607-611 (read for graphs and not device equations) and lecture viewgraphs

Composite Current Plot for the 42PD Circuit with 200kΩ Load to Ground

Copyright 2001, Regents of University of California

Problems and Opportunities in Logic Circuit Design

Problem #1: Significant wasted current and power when V_{OUT} is low. Problem #2: High value of V_{OUT} is adversely affected by a load resistor.

Missed Opportunity: The value of the input control signal is not used to adjust the state of the pull-up device.

What if : If the pull-up device could be a state-dependent device what kind of device would we want?

Pull-Up Device Design: Trial 1

Similar pull-up and pull-down states

Problem #1 is worse! There is even more wasted current and power than before when V_{OUT} is low because both devices are on at the same time.

> Look for a more Complementary approach. State 1

Pull-Up Device Design: Trial 2

Complementary pull-up and pull-down states

Pull-Down and Pull-Up Must Complement Rather Than Fight Each Other Reduce the Short-

Desirable Complementary Device Characteristics

We desire characteristics that are **complementary** for the pull-down and pull-up state-dependent devices.

V _{IN}	Low	High
Pull-Down Current	Low not leak	High Discharge Output
Pull-Up Current	High Charge Output	Low not leak

Designing the Complementary Device

The curve sets are very similar but have two key changes.

The creation of current with input State (V_{IN}) is reverse ordered (and also shifted).

The dependence on $V_{\text{OUT}\,\text{is}}$ reverse ordered and shifted by V_{DD}

42Pull-Down Device Equations Describe I_{OUT} as function of V_{IN} and V_{OUT}

Cut-off $V_{IN} \leq V_{TD}$ $I_{OUT-PD} = 0$ **Linear (with V_{OUT})** $V_{IN} \geq V_{TN}$ $V_{OUT} \leq V_{TD}$

$$I_{OUT-PD} = k_D (V_{IN} - V_{TD}) V_{OUT}$$

Saturation (with V_{OUT}) $V_{IN} \ge V_{TD}$ $V_{OUT} \ge V_{TD}$

$$I_{OUT-PD} = k_D \left(V_{IN} - V_{TD} \right) V_{TD}$$

Drawing I_{OUT} as function of $V_{\rm IN}$ and V_{OUT} for the 42Pull-Down Device Equations

The equations are expressly designed for EE42 to make it very simple to draw I_{OUT} vs. V_{OUT}

1) For $V_{IN} < V_{TD}$, the current is zero.

2) For $V_{IN} > V_{TD}$, first evaluate the current I_{OUT} at $V_{OUT} = V_{TD}$ and plot the single point (I_{OUT} , V_{OUT})

3) Draw a line from this point to the origin to create the linear region.

4) Draw a horizontal line from this point to create the saturation region

100

$$I_{OUT}(\mu A)$$

State 3 $V_{IN} = 3V$
60
Saturation (with V_{OUT})
Linear (with V_{OUT})
0
0
3
 $V_{OUT}(V)$

Lecture 16: 10/24/01 A.R. Neureuther

Copyright 2001, Regents of University of California

42Pull-Up Device Equations I_{OUT} as function of V_{IN} and V_{OUT} in the Logic Circuit

Cut-off $V_{DD} - V_{IN} \leq V_{TU}$ $I_{OUT-PU} = 0$ Linear (with V_{OUT}) $V_{DD} - V_{IN} \geq V_{TU}$ $I_{OUT-PU} = k_U (V'_{IN} - V_{TU}) V'_{OUT} = k_U (V_{DD} - V_{IN} - V_{TU}) (V_{DD} - V_{OUT})$

Saturation (with V_{OUT}) $V_{DD} - V_{IN} \ge V_{TU}$ $V_{DD} - V_{OUT} \ge V_{TU}$

$$I_{OUT-PU} = k_U (V'_{IN} - V_{TU}) V'_{TU} = k_U (V_{DD} - V_{IN} - V_{TU}) V_{TU}$$

Copyright 2001, Regents of University of California

Composite I_{OUT} vs. V_{OUT} to Find Points That Satisfies Both Devices for Each V_{IN}

Copyright 2001, Regents of University of California

Voltage Transfer Function for the Complementary Logic Circuit

Copyright 2001, Regents of University of California

Method for Finding V_M

At V_M,

- 1) $V_{OUT} = V_{IN} = V_M$
- 2) Both devices are in saturation
- $\mathbf{3)} \quad \mathbf{I}_{\mathbf{OUT} \ \mathbf{PD}} = \mathbf{I}_{\mathbf{OUT} \mathbf{PU}}$

$$I_{OUT-PD} = k_D (V_{IN} - V_{TD}) V_{TD} = I_{OUT-PU} = k_U (V_{DD} - V_{IN} - V_{TU}) V_{TU}$$

Substitute V_M

Solve for V_M

Example Result: When $k_D = k_P$ and $V_{TD} = V_{TU}$, $V_M = V_{DD}/2$