Static and Transient Analysis of Gates

- A) Detailed Recap of Static Gate Analysis Transistor CMOS Inverter Example Terminology, I_{OUT-SAT-D}, VTC, V_M
- **B)** Break to Discuss Quiz and Midterm
- C) Transient Gate Analysis
- **D)** Switch Resistor (R_{EQ}) Approx. Model
- E) Logic Block and 0.69R_{EQ}C Worst Case Inputs

Reading: 523-525, 604-611, (only the loadline methods) and lecture handouts

Transistor Inverter Example

It may be simpler to just think of PMOS and NMOS transistors instead of a general 3 terminal pull-up or pull-down devices or networks.

Copyright 2001, Regents of University of California

Copyright 2001, Regents of University of California

Terminology

V_{DD} = Power supply voltage (**D** is from Drain)

Pull-Down Network = Set of devices used to carry current from the output node to ground to discharge the output node to ground.

Pull-Up Network = Set of devices used to carry current from the power supply to the output node to charge the output node to the power supply voltage.

I_{OUT} = Current for the device under study.

\overline{} V_{TD} = Threshold Voltage value of V_{IN} at which the Pull-Down (NMOS transistor) begins to conduct.

 $V_{OUT-SAT-D}$ = Value of V_{OUT} beyond which the current I_{OUT-D} saturates at the (drain) current saturation value $I_{OUT-SAT-D}$.

States are Voltage Levels of V_{IN}

Copyright 2001, Regents of University of California

Saturation Current NMOS Model

Current I_{OUT} only flows when V_{IN} is larger than the threshold value V_{TD} and the current is proportional to V_{OUT} up to $V_{OUT-SAT-D}$ where it reaches the saturation current

$$I_{OUT-SAT-D} = k_D (V_{IN} - V_{TD}) V_{OUT-SAT-D}$$

Note that we have added an extra parameter to distinguish between threshold (V_{TD}) and saturation ($V_{OUT-SAT-D}$).

Saturation Current PMOS Model

Current I_{OUT} only flows when V_{IN} is smaller than V_{DD} minus the threshold value V_{TU} and the current is proportional to $(V_{DD}-V_{OUT})$ up to $(V_{DD}-V_{OUT-SAT-U})$ where it reaches the saturation current

$$I_{OUT-SAT-U} = k_U (V_{DD} - V_{IN} - V_{TU}) V_{OUT-SAT-U}$$

Composite I_{OUT} vs. V_{OUT} for CMOS

Copyright 2001, Regents of University of California

Voltage Transfer Function for the Complementary Logic Circuit V_{TD} State 1 for $V_{IN} = 1V$ 5 **PD-Off** V_{OUT-SAT-U} Vertical section due to zero slope of I_{OUT} vs. V_{OUT} in the saturation $V_{OUT}(V)$ region of both devices. 3 **√**_M State 3 for $V_{IN} = 3V$ V_{OUT-SAT-D} **PU-Off** State 5 for $V_{IN} = 5V$ 0 3 $V_{IN}(V)$

Copyright 2001, Regents of University of California

Method for Finding $\boldsymbol{V}_{\boldsymbol{M}}$

At V_M,

$$1) \quad \mathbf{V}_{\mathbf{OUT}} = \mathbf{V}_{\mathbf{IN}} = \mathbf{V}_{\mathbf{M}}$$

2) Both devices are in saturation

3)
$$I_{OUT-SAT-D} = I_{OUT-SAT-U}$$

 $I_{OUT-SAT-D} = k_D (V_{IN} - V_{TD}) V_{OUT-SAT-D}$
 $= I_{OUT-SAT-U} = k_U (V_{DR} - V_{IN} - V_{TU}) V_{OUT-SAT-U}$
Substitute V_M
Solve for V_M

Example Result: When $k_D = k_P$, $V_{OUT-SAT-D} = V_{OUT-SAT-U}$ and $V_{TD} = V_{TU}$, then $V_M = V_{DD}/2$

Lecture 17: October 29, 2001 Reminder: Quiz and Midterm

Quiz 20 minutes At Start of Class Wed. Oct 31

Covers Material 6th-9th week including HW#9

Midterm in Class Wed. Nov 7th

Covers Material 6th-10th week including HW#10

Closed Book, Closed Notes, Bring Calculator, Paper Provided Last Name A-K 2040 Valley LSB; Last Name L-Z in 10 Evans

Topic Coverage Review in class Oct 31; Old Exams on Web

Review Session: Sat 1-2:30 (TBA Evans); Tu 5-6:00 (? Cory)

EE 43 Labs Are Not Cancelled:

Transient Gate Problem: Discharging and Charging Capacitance on the Output

Output Capacitance Voltage vs. Time

When $V_{OUT} > V_{OUT-SAT-D}$ the available current is $I_{OUT-SAT-D}$

Assume that the necessary voltage swing to cause the next downstream gate to begin to switch is $V_{DD}/2$ or 2.5V. The propagation delay is thus

$$\Delta t = \frac{C_{OUT} \Delta V}{I_{OUT-SAT-D}} = \frac{C_{OUT} V_{DD}}{2I_{OUT-SAT-D}} = \frac{50 \, fF \cdot 2.5V}{100 \, \mu A} = 1.25 ns$$
Copyright 2001. Regents of University of California

Switched Equivalent Resistance Model

The above model assumes the device is an ideal constant current source.

1) This is not true below $V_{OUT-SAT-D}$ and leads to in accuracies.

2) Combining ideal current sources in networks with series and parallel connections is problematic.

Instead define an equivalent resistance for the device by setting $0.69R_DC$ equal to the Δt found above

$$\Delta t = \frac{C_{OUT}V_{DD}}{2I_{OUT-SAT-D}} = 0.69R_DC_{OUT}$$
This gives
$$R_D = \frac{V_{DD}}{2 \cdot (0.69)I_{OUT-SAT-D}} \approx \frac{3}{4} \frac{V_{DD}}{I_{OUT-SAT-D}} = \frac{3}{4} \frac{5V}{100\mu A} = 37.5k\Omega$$

Each device can now be replaced by this equivalent resistor. Copyright 2001, Regents of University of California

Switched Equivalent Resistance Network

Switched Equivalent Resistance Values

The resistor values depend on the properties of silicon, geometrical layout, design style and technology node.

n-type silicon has a carrier mobility that is 2 to 3 times higher than p-type.

The resistance is inversely proportion to the gate width/length in the geometrical layout.

Design styles may restrict all NMOS and PMOS to be of a predetermined fixed size.

The current per unit width of the gate increases nearly inversely with the linewidth.

For convenience in EE 42 we assume $R_D = R_U = 10 \text{ k}\Omega$

Inverter Propagation Delay

Discharge (pull-down)

 $\Delta t = 0.69 R_D C_{OUT} = 0.69(10 k\Omega)(50 fF) = 345 ps$

Discharge (pull-up)

$$\Delta t = 0.69 R_U C_{OUT} = 0.69(10 k\Omega)(50 fF) = 345 ps$$

V_{DD}

<u>A</u>

B

A

•R

C

B

C

Version Date 10/28/01

Logic Gate Propagation Delay

The initial state depends on the previous inputs.

The equivalent resistance of the pull-down or pullup network depends on the current input state.

Example: A=0, B=0, C=0 for a long time.

The capacitor has precharged up to $V_{DD} = 5V$.

 $C_{OUT} = 50 \text{ fF}$

Copyright 2001, Regents of University of California

V_{OUT}

Rn

Logic Gate Propagation Delay (Cont.)

At t=0, B and C switch to high = V_{DD} and A remains low.

C_{OUT} discharges through the pull-down resistance of gates **B** and **C** in series.

 $\Delta t = 0.69(R_{DB}+R_{DC})C_{OUT}$ = 0.69(20k\Omega)(50fF) = 690 ps

The propagation delay is two times longer than that for the inverter!