Static and Transient Analysis of Gates

A) Detailed Recap of Static Gate Analysis
 Transistor CMOS Inverter Example
 Terminology, \(I_{\text{OUT-SAT-D}} \), VTC, \(V_M \)

B) Break to Discuss Quiz and Midterm

C) Transient Gate Analysis

D) Switch Resistor (\(R_{\text{EQ}} \)) Approx. Model

E) Logic Block and 0.69\(R_{\text{EQ}} \)C Worst Case Inputs

Reading: 523-525, 604-611, (only the loadline methods) and lecture handouts
Transistor Inverter Example

It may be simpler to just think of PMOS and NMOS transistors instead of a general 3 terminal pull-up or pull-down devices or networks.
Case #1: $V_{IN} = V_{DD} = 5V$

The Output is Pulled-Down

- The PMOS transistor is OFF when $V_{IN} > V_{DD} - V_{TU}$
- The NMOS transistor is ON when $V_{IN} > V_{TD}$
Case #2: $V_{IN} = 0$
The Output is Pulled-Up

The PMOS transistor is ON when $V_{IN} < V_{DD} - V_{TU}$

The NMOS transistor is OFF when $V_{IN} < V_{TD}$
Terminology

\[V_{DD} = \text{Power supply voltage (D is from Drain)} \]

Pull-Down Network = Set of devices used to carry current from the output node to ground to discharge the output node to ground.

\[\text{Pull-Up Network} = \text{Set of devices used to carry current from the power supply to the output node to charge the output node to the power supply voltage.} \]

\[I_{OUT} = \text{Current for the device under study.} \]

\[V_{TD} = \text{Threshold Voltage value of } V_{IN} \text{ at which the Pull-Down (NMOS transistor) begins to conduct.} \]

\[V_{OUT-SAT-D} = \text{Value of } V_{OUT} \text{ beyond which the current } I_{OUT-D} \text{ saturates at the (drain) current saturation value } I_{OUT-SAT-D}. \]
States are Voltage Levels of V_{IN}

- **State 1 or** $V_{IN} = 1V$
- **State 3 or** $V_{IN} = 3V$
- **State 5 or** $V_{IN} = 5V$

(Drain) current saturation values:
- $I_{OUT-SAT-D} = 100 \mu A$
- $I_{OUT-SAT-D} = 50 \mu A$
- $I_{OUT-SAT-D} = 0 \mu A$

The maximum voltage is V_{DD}.

Current is flat (saturated) beyond $V_{OUT-SAT-D}$.

Current is zero until V_{IN} is larger than V_{TD}.
Saturation Current NMOS Model

Current I_{OUT} only flows when V_{IN} is larger than the threshold value V_{TD} and the current is proportional to V_{OUT} up to $V_{OUT-SAT-D}$ where it reaches the saturation current:

$$I_{OUT-SAT-D} = k_D (V_{IN} - V_{TD}) V_{OUT-SAT-D}$$

Note that we have added an extra parameter to distinguish between threshold (V_{TD}) and saturation ($V_{OUT-SAT-D}$).

Example:

- $k_D = 25 \, \mu A/V^2$
- $V_{TD} = 1V$
- $V_{OUT-SAT-D} = 1V$

Use these values in the homework.

$$I_{OUT-SAT-PD} = 25 \frac{\mu A}{V^2} (3V - 1V) |V| = 50 \mu A$$

Copyright 2001, Regents of University of California
Saturation Current PMOS Model

Current I_{OUT} only flows when V_{IN} is smaller than V_{DD} minus the threshold value V_{TU} and the current is proportional to $(V_{DD} - V_{OUT})$ up to $(V_{DD} - V_{OUT-SAT-U})$ where it reaches the saturation current

$$I_{OUT-SAT-U} = k_U (V_{DD} - V_{IN} - V_{TU}) V_{OUT-SAT-U}$$

Example:

$k_U = 20 \, \mu A/V^2$

$V_{TU} = 1V$

$V_{OUT-SAT-U} = 1V$

$$I_{OUT-SAT-U} = 20 \frac{\mu A}{V^2} (5V - 3V - 1V) 1V = 20 \mu A$$

Use these values in the homework.

State 3 $V_{IN} = 3V$

Linear (with V_{OUT})

Saturation (with V_{OUT})
Composite I_{OUT} vs. V_{OUT} for CMOS

- **PU current is flat (saturated) below** $V_{DD} - V_{OUT-SAT-D}$
- **PD current is flat (saturated) beyond** $V_{OUT-SAT-D}$

Solution
- State 3 or $V_{IN} = 3V$
- $V_{OUT-SAT-D}$
- $V_{OUT} = 5$ $V_{OUT}(V)$

Copyright 2001, Regents of University of California
Voltage Transfer Function for the Complementary Logic Circuit

State 1 for $V_{IN} = 1V$

Vertical section due to zero slope of I_{OUT} vs. V_{OUT} in the saturation region of both devices.

State 3 for $V_{IN} = 3V$

State 5 for $V_{IN} = 5V$
Method for Finding V_M

At V_M,

1) $V_{OUT} = V_{IN} = V_M$

2) Both devices are in saturation

3) $I_{OUT-SAT-D} = I_{OUT-SAT-U}$

$$I_{OUT-SAT-D} = k_D (V_{IN} - V_{TD}) V_{OUT-SAT-D}$$

$$= I_{OUT-SAT-U} = k_U (V_{DD} - V_{IN} - V_{TU}) V_{OUT-SAT-U}$$

Substitute V_M

Solve for V_M

Example Result: When $k_D = k_P$, $V_{OUT-SAT-D} = V_{OUT-SAT-U}$ and $V_{TD} = V_{TU}$, then $V_M = V_{DD}/2$
Lecture 17: October 29, 2001

Reminder: Quiz and Midterm

Quiz 20 minutes At Start of Class Wed. Oct 31
Covers Material 6th-9th week including HW#9

Midterm in Class Wed. Nov 7th
Covers Material 6th-10th week including HW#10

Closed Book, Closed Notes, Bring Calculator, Paper Provided
Last Name A-K 2040 Valley LSB; Last Name L-Z in 10 Evans

Topic Coverage Review in class Oct 31; Old Exams on Web
Review Session: Sat 1-2:30 (TBA Evans); Tu 5-6:00 (? Cory)

EE 43 Labs Are Not Cancelled:

Copyright 2001, Regents of University of California
Transient Gate Problem: Discharging and Charging Capacitance on the Output

\[V_{IN} = V_{DD} = 5V \]

\[V_{OUT} \]

\[C_{OUT} = 50 \text{ fF} \]
Output Capacitance Voltage vs. Time

When $V_{OUT} > V_{OUT-SAT-D}$ the available current is $I_{OUT-SAT-D}$

Assume that the necessary voltage swing to cause the next downstream gate to begin to switch is $V_{DD}/2$ or 2.5V. The propagation delay is thus

$$
\Delta t = \frac{C_{OUT} \Delta V}{I_{OUT-SAT-D}} = \frac{C_{OUT} V_{DD}}{2 I_{OUT-SAT-D}} = \frac{50 \text{fF} \cdot 2.5V}{100 \mu A} = 1.25 \text{ns}
$$

Copyright 2001, Regents of University of California
Switched Equivalent Resistance Model

The above model assumes the device is an ideal constant current source.

1) This is not true below \(V_{\text{OUT-SAT-D}} \) and leads to inaccuracies.

2) Combining ideal current sources in networks with series and parallel connections is problematic.

Instead define an equivalent resistance for the device by setting \(0.69R_D C \) equal to the \(\Delta t \) found above

\[
\Delta t = \frac{C_{\text{OUT}} V_{\text{DD}}}{2I_{\text{OUT-SAT-D}}} = 0.69 R_D C_{\text{OUT}}
\]

This gives

\[
R_D = \frac{V_{\text{DD}}}{2 \cdot (0.69) I_{\text{OUT-SAT-D}}} \approx \frac{3}{4} \frac{V_{\text{DD}}}{I_{\text{OUT-SAT-D}}} = \frac{3}{4} \frac{5V}{100 \mu A} = 37.5k\Omega
\]

Each device can now be replaced by this equivalent resistor.
Switched Equivalent Resistance Network

Switches close when input is low.

Switches close when input is high.
Switched Equivalent Resistance Values

The resistor values depend on the properties of silicon, geometrical layout, design style and technology node.

n-type silicon has a carrier mobility that is 2 to 3 times higher than p-type.

The resistance is inversely proportional to the gate width/length in the geometrical layout.

Design styles may restrict all NMOS and PMOS to be of a predetermined fixed size.

The current per unit width of the gate increases nearly inversely with the linewidth.

For convenience in EE 42 we assume $R_D = R_U = 10 \, \text{k}\Omega$
Inverter Propagation Delay

Discharge (pull-down)

\[\Delta t = 0.69 R_D C_{OUT} = 0.69(10k\Omega)(50fF) = 345 \text{ ps} \]

\[V_{IN} = V_{dd} \]

\[V_{OUT} \]

\[C_{OUT} = 50fF \]

Discharge (pull-up)

\[\Delta t = 0.69 R_U C_{OUT} = 0.69(10k\Omega)(50fF) = 345 \text{ ps} \]

\[V_{IN} = V_{dd} \]

\[V_{OUT} \]

\[C_{OUT} = 50fF \]
Logic Gate Propagation Delay

The initial state depends on the previous inputs.

The equivalent resistance of the pull-down or pull-up network depends on the current input state.

Example: A=0, B=0, C=0 for a long time.

The capacitor has precharged up to \(V_{DD} = 5V \).

\(C_{OUT} = 50 \text{ fF} \)
Logic Gate Propagation Delay (Cont.)

At $t=0$, B and C switch to high = V_{DD} and A remains low.

C_{OUT} discharges through the pull-down resistance of gates B and C in series.

$$\Delta t = 0.69(R_{DB} + R_{DC})C_{OUT} = 0.69(20k\Omega)(50fF) = 690 \text{ ps}$$

The propagation delay is **two times longer** than that for the inverter!