Static and Transient Analysis of Gates

A) Detailed Recap of Static Gate Analysis

Transistor CMOS Inverter Example Terminology, $\mathrm{I}_{\text {Out-sat-D }}, \mathbf{V T C}, \mathbf{V}_{\mathbf{M}}$
B) Break to Discuss Quiz and Midterm
C) Transient Gate Analysis
D) Switch Resistor (R_{EQ}) Approx. Model
E) Logic Block and $0.69 \mathrm{R}_{\text {EQ }} \mathbf{C}$ Worst Case Inputs

Reading: 523-525, 604-611, (only the loadline methods) and lecture handouts

Version Date 10/28/01

Transistor Inverter Example

It may be simpler to just think of PMOS and NMOS transistors instead of a general 3 terminal pull-up or pull-down devices or networks.

Copyright 2001, Regents of University of California

Case \#1: $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$ The Output is Pulled-Down

Copyright 2001, Regents of University of California

Copyright 2001, Regents of University of California

Terminology

Version Date 10/28/01

States are Voltage Levels of $\mathbf{V}_{\text {IN }}$

Copyright 2001, Regents of University of California

Saturation Current NMOS Model

Current $\mathrm{I}_{\text {OUT }}$ only flows when $\mathrm{V}_{\text {IN }}$ is larger than the threshold value $V_{T D}$ and the current is proportional to $V_{\text {OUT }} u p$ to $\mathbf{V}_{\text {OUt-sat-d }}$ where it reaches the saturation current

$$
I_{O U T-S A T-D}=k_{D}\left(V_{I N}-V_{T D}\right) V_{O U T-S A T-D}
$$

Note that we have added an extra parameter to distinguish between threshold (V_{TD}) and saturation ($\mathrm{V}_{\text {OUt-Sat-D }}$).

Saturation Current PMOS Model

Current $I_{\text {OUT }}$ only flows when $V_{\text {IN }}$ is smaller than $V_{D D}$ minus the threshold value $V_{T U}$ and the current is proportional to $\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {OUT }}\right)$ up to $\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {OUT-SAT-U }}\right)$ where it reaches the saturation current

$$
I_{O U T-S A T-U}=k_{U}\left(V_{D D}-V_{I N}-V_{T U}\right) V_{O U T-S A T-U}
$$

Composite $\mathrm{I}_{\text {OUT }}$ vs. $\mathrm{V}_{\text {OUT }}$ for CMOS

Copyright 2001, Regents of University of California

Version Date 10/28/01

Voltage Transfer Function for the Complementary Logic Circuit

Copyright 2001, Regents of University of California

Method for Finding $\mathbf{V}_{\mathbf{M}}$

At V_{M},

1) $\mathbf{V}_{\text {OUT }}=V_{\text {IN }}=V_{M}$
2) Both devices are in saturation
3) $I_{\text {OUt-SAT-D }}=I_{\text {OUt-SAT-U }}$

$$
\begin{aligned}
& I_{\text {OUT-SAT-D }}=k_{D}\left(V_{I N}-V_{T D)}\right) V_{O U T-S A T-D} \\
& =I_{O U T-S A T-U}=k_{U}\left(V_{D \mathbf{D}}-V_{I N}-V_{T U}\right) V_{O U T-S A T-U} \\
&
\end{aligned}
$$

Solve for V_{M}

Example Result: When $\mathbf{k}_{\mathbf{D}}=\mathbf{k}_{\mathbf{P}}, \mathbf{V}_{\text {OUt-SAt-D }}=\mathbf{V}_{\text {OUt-SAT-U }}$ and $V_{T D}=V_{T U}$, then $V_{M}=V_{D D} / 2$

Copyright 2001, Regents of University of California

Lecture 17: October 29, 2001

Reminder: Quiz and Midterm

Quiz 20 minutes At Start of Class Wed. Oct 31
Covers Material $6^{\text {th }} \mathbf{- 9}^{\text {th }}$ week including HW\#9
Midterm in Class Wed. Nov $7^{\text {th }}$
Covers Material $6^{\text {th }}-10^{\text {th }}$ week including HW\#10
Closed Book, Closed Notes, Bring Calculator, Paper Provided Last Name A-K 2040 Valley LSB; Last Name L-Z in 10 Evans

Topic Coverage Review in class Oct 31; Old Exams on Web
Review Session: Sat 1-2:30 (TBA Evans); Tu 5-6:00 (? Cory)
EE 43 Labs Are Not Cancelled:
Copyright 2001, Regents of University of California

Transient Gate Problem: Discharging and Charging Capacitance on the Output

Copyright 2001, Regents of University of California

Output Capacitance Voltage vs. Time

When $\mathrm{V}_{\text {OUT }}>\mathbf{V}_{\text {OUt-SAT-D }}$ the available current is $\mathrm{I}_{\text {OUT-SAT-D }}$
Assume that the necessary voltage swing to cause the next downstream gate to begin to switch is $V_{D D} / 2$ or 2.5 V . The propagation delay is thus

$$
\Delta t=\frac{C_{\text {OUT }} \Delta V}{I_{\text {OUT-SAT-D }}}=\frac{C_{O U T} V_{D D}}{2 I_{\text {OUT-SAT-D }}}=\frac{50 \mathrm{fF} \cdot 2.5 \mathrm{~V}}{100 \mu \mathrm{~A}}=1.25 \mathrm{~ns}
$$

Copyright 2001, Regents of University of California

Switched Equivalent Resistance Model

The above model assumes the device is an ideal constant current source.

1) This is not true below $V_{\text {out-sat-d }}$ and leads to in accuracies.
2) Combining ideal current sources in networks with series and parallel connections is problematic.

Instead define an equivalent resistance for the device by setting $0.69 \mathrm{R}_{\mathrm{D}} \mathrm{C}$ equal to the Δt found above

This gives

$$
\Delta t=\frac{C_{O U T} V_{D D}}{2 I_{\text {OUT-SAT-D }}}=0.69 R_{D} C_{O U T}
$$

$$
R_{D}=\frac{V_{D D}}{2 \cdot(0.69) I_{O U T-S A T-D}} \approx \frac{3}{4} \frac{V_{D D}}{I_{O U T-S A T-D}}=\frac{3}{4} \frac{5 \mathrm{~V}}{100 \mu \mathrm{~A}}=37.5 \mathrm{k} \Omega
$$

Each device can now be replaced by this equivalent resistor.
Copyright 2001, Regents of University of California

Version Date 10/28/01

Switched Equivalent Resistance Network

Copyright 2001, Regents of University of California

Switched Equivalent Resistance Values

The resistor values depend on the properties of silicon, geometrical layout, design style and technology node.
n-type silicon has a carrier mobility that is 2 to $\mathbf{3}$ times higher than p-type.

The resistance is inversely proportion to the gate width/length in the geometrical layout.

Design styles may restrict all NMOS and PMOS to be of a predetermined fixed size.

The current per unit width of the gate increases nearly inversely with the linewidth.

For convenience in EE 42 we assume $R_{D}=R_{U}=10 \mathrm{k} \Omega$

Inverter Propagation Delay

Discharge (pull-down)

$$
\Delta t=0.69 R_{D} C_{\text {OUT }}=0.69(10 \mathrm{k} \Omega)(50 \mathrm{fF})=345 \mathrm{ps}
$$

Discharge (pull-up)

$$
\Delta t=0.69 R_{\mathrm{U}} \mathrm{C}_{\text {OUT }}=0.69(10 \mathrm{k} \Omega)(50 \mathrm{fF})=345 \mathrm{ps}
$$

Copyright 2001, Regents of University of California

Logic Gate Propagation Delay

Copyright 2001, Regents of University of California

Logic Gate Propagation Delay (Cont.)

$$
\begin{aligned}
\Delta t & =0.69\left(\mathrm{R}_{\mathrm{DB}}+\mathrm{R}_{\mathrm{DC}}\right) \mathrm{C}_{\mathrm{OUT}} \\
& =0.69(20 \mathrm{k} \Omega)(50 \mathrm{fF})=690 \mathrm{ps}
\end{aligned}
$$

The propagation delay is two times longer than that for the inverter!

Copyright 2001, Regents of University of California

