Logic Switched Resistor Model
 A) Worst Case Input Scenario B) Cascade Stages for Many Inputs C) Typical $0.25 \mu \mathrm{~m}$ Device Parameters

Reading:
lecture viewgraphs

Transient Gate Problem: Discharging and Charging Capacitance on the Output

Copyright 2001, Regents of University of California

Output Capacitance Voltage vs. Time

When $\mathrm{V}_{\text {OUT }}>\mathbf{V}_{\text {OUt-SAT-D }}$ the available current is $\mathrm{I}_{\text {OUT-SAT-D }}$
Assume that the necessary voltage swing to cause the next downstream gate to begin to switch is $V_{D D} / 2$ or 2.5 V . The propagation delay is thus

$$
\Delta t=\frac{C_{\text {OUT }} \Delta V}{I_{\text {OUT-SAT-D }}}=\frac{C_{\text {OUT }} V_{D D}}{2 I_{\text {OUT-SAT-D }}}=\frac{50 \mathrm{fF} \cdot 2.5 \mathrm{~V}}{100 \mu \mathrm{~A}}=1.25 \mathrm{~ns}
$$

Copyright 2001, Regents of University of California

Switched Equivalent Resistance Model

The above model assumes the device is an ideal constant current source.

1) This is not true below $V_{\text {out-sat-d }}$ and leads to in accuracies.
2) Combining ideal current sources in networks with series and parallel connections is problematic.

Instead define an equivalent resistance for the device by setting $0.69 \mathrm{R}_{\mathrm{D}} \mathrm{C}$ equal to the Δt found above

This gives

$$
\Delta t=\frac{C_{O U T} V_{D D}}{2 I_{O U T-S A T-D}}=0.69 R_{D} C_{O U T}
$$

$R_{D}=\frac{V_{D D}}{2 \cdot(0.69) I_{O U T-S A T-D}} \approx \frac{3}{4} \frac{V_{D D}}{I_{\text {OUT-SAT-D }}}=\frac{3}{4} \frac{5 \mathrm{~V}}{100 \mu \mathrm{~A}}=37.5 \mathrm{k} \Omega$
Each device can now be replaced by this equivalent resistor.
Copyright 2001, Regents of University of California

Version Date 10/30/01

Switched Equivalent Resistance Network

Copyright 2001, Regents of University of California

Version Date 10/30/01

Inverter Propagation Delay

Discharge (pull-down)

$$
\Delta t=0.69 R_{D} C_{\text {OUT }}=0.69(10 \mathrm{k} \Omega)(50 \mathrm{fF})=345 \mathrm{ps}
$$

Discharge (pull-up)

$$
\Delta t=0.69 R_{\mathrm{U}} \mathrm{C}_{\text {OUT }}=0.69(10 \mathrm{k} \Omega)(50 \mathrm{fF})=345 \mathrm{ps}
$$

Copyright 2001, Regents of University of California

Version Date 10/30/01

Logic Gate Propagation Delay: Initial State

A

The equivalent resistance of the pull-down or pullup network for the transient phase depends on the new (present) input state.

Example: $\mathbf{A}=\mathbf{0}, \mathrm{B}=\mathbf{0}, \mathrm{C}=0$ for a long time.
These inputs provided a path to \mathbf{V}_{DD} for a long time and the capacitor has precharged up to $V_{D D}=5 \mathrm{~V}$.

C

B

A

"

ti

$$
\mathbf{P}
$$

$$
\mathrm{C}_{\mathrm{OUT}}=50 \mathrm{fF}
$$

Copyright 2001, Regents of University of California

Version Date 10/30/01
Logic Gate Propagation Delay: Transient

The propagation delay is two times longer than that for the inverter!

Copyright 2001, Regents of University of California

Logic Gate: Worst Case Scenarios

What combination of previous and present logic inputs will make the Pull-Up the fastest?

What combination of previous and overall? present logic inputs will make the Pull-Up the slowest?

What combination of previous and present logic inputs will make the Pull-Down the fastest?

What combination of previous and present logic inputs will make the Pull-Down the slowest?

Logic Gate Cascade

To avoid large resistance due to many gates in series, logic functions with 4 or more inputs are usually made from cascading two or more 2-4 input blocks.

$\mathbf{B 2}=\mathbf{V}_{\text {OUT } 1}$
The four independent input are A1, B1, A2 and C2.

A2 high discharges gate 2 without even waiting for the output of gate 1 .

C2 high and A 2 low makes gate 2 wait for Gate 1 output

Switched Equivalent Resistance Values

The resistor values depend on the properties of silicon, geometrical layout, design style and technology node.
n-type silicon has a carrier mobility that is 2 to $\mathbf{3}$ times higher than p-type.

The resistance is inversely proportion to the gate width/length in the geometrical layout.

Design styles may restrict all NMOS and PMOS to be of a predetermined fixed size.

The current per unit width of the gate increases nearly inversely with the linewidth.

CMOS Device Parameters at $\mathbf{0 . 2 5} \mu \mathrm{m}$

Gate length is $0.25 \mu \mathrm{~m}=250 \mathrm{~nm}$

$$
\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}
$$

A minimum sized device has $W=0.5 \mu \mathrm{~m}$

$$
\text { and } L=0.25 \mu \mathrm{~m} \text { so } W / L=2
$$

$$
k=k^{\prime} \frac{(W / L)}{(W / L)_{\min }}
$$

	$\mathrm{V}_{\mathrm{T}}(\mathrm{V})$	$\mathrm{V}_{\text {OUT-SAT }}(\mathrm{V})$	$\mathrm{k}^{\prime}\left(\mu \mathrm{A} / \mathrm{V}^{2}\right)$
NMOS	0.43	0.63	115
PMOS	0.4	1	30

$$
I_{\text {OUT-SAT-D }}=\left(115 \mu \mathrm{~A} / V^{2}\right)\left(\frac{2}{2}\right)(2.5 \mathrm{~V}-0.43 \mathrm{~V})(0.63 \mathrm{~V})=150 \mu \mathrm{~A}
$$

Copyright 2001, Regents of University of California

