Lecture Review

Lecture 25: 12/5/01 A.R. Neureuther

Version Date 12/04/01

Review For Final

FINAL EXAM

12:30-3:30 Friday, December 14th, F0295 Haas Closed Book, Device Equations Provided Bring calculator, Paper Provided

Review Sessions:

Proposed 5-6:30 PM Mon Dec 10

Proposed 5-6:30 PM Wed Dec 12

Office hours:

Professor Neureuther: 11 M,Tu, W, Th, F but 10-11 on F Dec 14th

TA's: TBA on web

Congratulations Jason Gatt and Kevin Ha "Best in Show" in Tutbot/Calbot Contest

EE 42 Final Exam: Design Guidelines

- Cover Material Since Midterm 2 at 2X compared to material on Midterms 1 and 2.
 - About 100 of 200 points on material since Midterm 2 and about 100 points on material prior to Midterm 2
- Change to an accomplishment basis instead of B- average standard normal distribution.
 - about 60 points of B level material
 - about 60 points of A level material
 - as a consequence exam average will be 120/200
- Results on 3 exams will be weighted by relative spread before merging to prevent large variation on final from wiping out Midterms.

Key Material Since Midterm #2

- CMOS Static Type Analysis (big)
 - Current given voltage, V_{OUT} vs. V_{IN}, Short Circuit Current, D.C.
 power
- CMOS Transient Analysis (big)
 - Sources and amount of capacitance, propagation delay, a.c. power, clocked latches
- Diode and Bipolar Transistor (medium)
 - No physics but large signal analysis
- Physics (small)
 - Resistance from carrier motion, field effect carriers and resistance

About 100 pts with about

10-20 pts C, 20-30 pts B, and 40-50 pts A.

Lecture 25: 12/5/01 A.R. Neureuther

Version Date 12/04/01

Key Material Before Midterm #2

- Equivalent Circuits and Load Lines
 - Simplify load circuits, find V_{OUT} vs. VIN
- Dependent Sources
 - Gain, input and output resistance
- Ideal Op-Amps
- Transients
- Gates
 - Logic function and timing diagrams

Total of about 100 Pts with about

50-60 pts C,

30-40 pts B, and

10-20 pts A.

PULSE: Output is Rising exponential then Falling exponential

Lecture 7

Example: Switch rises at t =0, falls at t = 0.1, 1 or 10μsec (Do 1μsec case)

Solution: for RC = 1μ sec: during the first rise V obeys:

$$V = 5[1 - e^{\frac{-t}{10^{-6}}}]$$

Thus at $t = 1\mu sec$, rising voltage reaches

$$5[1-e^{-1}] = 3.16V$$

Now starting at 1µsec we are discharging the capacitor so the form is a falling exponential with initial value 3.16 V:

What is equation?

Lecture 25: 12/5/01 A.R. Neureuther

Version Date 12/04/01

EXAMPLE WITH BOTH SPECIAL CASES

Lecture 10

Version Date 12/04/01

How to Combine Gate to Produce a Desired Logic Function? (More basic Logical Synthesis)

Example:

Α	В	С	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

$$\begin{array}{c} A - \circ \\ B - \circ \\ C \end{array} \qquad F$$

$$\begin{array}{c} A - \circ \\ A - \circ \\ B - \circ \\ C - \circ \end{array}$$

$$F = \overline{A} \overline{B} C + AB \overline{C}$$

Lecture 25: 12/5/01 A.R. Neureuther

Version Date 12/04/01

Lecture 11

Logical Synthesis Guided by DeMorgan's Theorem

DeMorgan's Theorem:

$$A + B + C = \overline{A \overline{B} \overline{C}}$$
 or $\overline{A} + \overline{B} + \overline{C} = \overline{A \overline{B} \overline{C}}$

Example of Using DeMorgan's Theorem:

Copyright 2001, Regents of University of California

Lecture 11

Logical Synthesis of XOR

Α	В	F	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

$$F = A \bullet \overline{B} + \overline{A} \bullet B$$

We Need a Timing Diagram!

Copyright 2001, Regents of University of California

Lecture 11

TIMING DIAGRAMS

Show transitions of variables vs time

Lecture 25: 12/5/01 A.R. Neureuther

Version Date 12/04/01

The 4 Basic Linear Dependent Sources

Lecture 13

Version Date 12/04/01

EXAMPLE CIRCUIT: INCREASED OUTPUT RESISTANCE

Intuitive Explanation: GmV_{IN} burps current which has to also go through R_0 . This raises v_{TEST} and the output impedance v_{TEST}/i_{TEST}

Finish this in the homework

Lecture 14

CASCADE OP-AMP CIRCUITS

How do you get started on finding V_0 ?

Hint: Identify Stages

Hint: I_{IN} does not affect V_{O1}

See the further examples of op-amp circuits in the reader Copyright 2001, Regents of University of California

Logic Gates – How are they built in practice?

Pull up
Network

Valves in Series => NAND

Valves in Parallel => NOR

What goes in this box?

How does it affect digital performance?

Composite Current Plot for the 42PD Circuit with 200kΩ Load to Ground

Lecture 15

Copyright 2001, Regents of University of California

Voltage Transfer Function for the 42PD Logic Circuit w/wo Load

Copyright 2001, Regents of University of California

Pull-Down and Pull-Up Must Complement Rather Than Fight Each Other Reduce the Short-

Lecture 16

Rather Than Fight Each Other Reduce the Short-Circuit Current by making either one or the other device off.

Input for State Control Signal

Share Same Signal

Input for State Control Signal

Composite I_{OUT} vs. V_{OUT} for CMOS

Copyright 2001, Regents of University of California

Voltage Transfer Function for the Complementary Logic Circuit

Copyright 2001, Regents of University of California

Lecture 17

Method for Finding V_M

At V_{M} ,

- $1) \quad \mathbf{V_{OUT}} = \mathbf{V_{IN}} = \mathbf{V_{M}}$
- 2) Both devices are in saturation
- $\mathbf{3)} \quad \mathbf{I}_{\mathbf{OUT\ PD}} = \mathbf{I}_{\mathbf{OUT\ PU}}$

$$I_{OUT-PD} = k_D (V_{IN} - V_{TD}) V_{TD} = I_{OUT-PU} = k_U (V_{DD} - V_{IN}) - V_{TU}) V_{TU}$$
Substitute V_{M}

Solve for V_M

Example Result: When $k_D = k_P$ and $V_{TD} = V_{TU}$, $V_M = V_{DD}/2$

Switched Equivalent Resistance Model

Lecture 17

The above model assumes the device is an ideal constant current source.

- 1) This is not true below $V_{OUT-SAT-D}$ and leads to in accuracies.
- 2) Combining ideal current sources in networks with series and parallel connections is problematic.

Instead define an equivalent resistance for the device by setting $0.69R_DC$ equal to the Δt found above

 $\Delta t = \frac{C_{OUT}V_{DD}}{2I_{OUT-SAT-D}} = 0.69R_DC_{OUT}$

This gives

$$R_D = \frac{V_{DD}}{2 \cdot (0.69) I_{OUT-SAT-D}} \approx \frac{3}{4} \frac{V_{DD}}{I_{OUT-SAT-D}} = \frac{3}{4} \frac{5V}{100 \mu A} = 37.5 k\Omega$$

Each device can now be replaced by this equivalent resistor.

Logic Gate Propagation Delay (Cont.)

The propagation delay is two times longer than that for the inverter!

Lecture 18

Logic Gate Cascade

To avoid large resistance due to many gates in series, logic functions with 4 or more inputs are usually made from cascading two or more 2-4 input blocks.

$$B2 = V_{OUT 1}$$

The four independent input are A1, B1, A2 and C2.

A2 high discharges gate 2 without even waiting for the output of gate 1.

C2 high and A2 low makes gate 2 wait for Gate 1 output

Lecture 18

Version Date 12/04/01

A Double Latch is an Edge-Triggered D Type

During the low part of the clock cycle this circuit records the input value and when the clock goes high drives $V_{OUT\,2}$ to the voltage level that arrived. (This is the classic function of a D flip-flop.)

Note that this circuit is not fooled by noise on the input and makes its decision on the rising edge of the clock (edge-triggered).

Feedback Can Provide Memory

Lecture 19

Lecture 20 DIODE I-V CHARACTERISTICS AND MODELS 12/04/01

The equation $I = I_0 exp({}^{qV}/kT - 1)$ is graphed below for $I_0 = 10^{-15} A$

The characteristic is described as a "rectifier" – that is, a device that permits current to pass in only one direction. (The hydraulic analog is a "check value".) Hence the symbol:

Simple "Perfect Rectifier" Model

If we can ignore the small forwardbias voltage drop of a diode, a simple effective model is the "perfect rectifier," whose I-V characteristic is given below:

Lecture 21 ppn Bipolar Transistor: V_{OUT} vs. V_{IN}

2/04/01

Physics of Current Flow, Resistance, Resistivity

But **q N t** has the dimensions of charge per unit area and represents the charge per unit area in a film of thickness **t** when the film has **N** carriers/cm³ and is **t** units thick. Thus we call **q N t** the "**Q**" and

$$R = (L/W)/ \mu Q = L/W R_{\square}$$

Where \mathbf{R}_{\square} is the resistance of a "square" of the film. Clearly if L is four times W, then R = 4 \mathbf{R}_{\square} .

Relation of Current to Physical Parameters

Lecture 23

Geometrical Layout

$$\mu_n = 500 \left(\frac{cm^2}{V_S} \right) \qquad \mu_p = 150 \left(\frac{cm^2}{V_S} \right)$$

$$C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}} = \frac{\left(8.85x10^{-14} F/cm \right) \left(3.9 \right)}{6x10^{-7} cm} = 5.75x10^{-7} F/cm^2$$

$$V_{OUT-SAT-n} = E_{Crit} \cdot L = 10^4 \left(\frac{V}{cm} \right) \cdot 0.25x10^{-4} cm = 0.25V$$

Lecture 25: 12/5/01 A.R. Neureuther

Version Date 12/04/01

CMOS Device Parameters at 0.25µm

Lecture 23

Gate length is $0.25 \mu m = 250 nm$

$$V_{DD} = 2.5V$$

	$V_{T}(V)$	$V_{OUT\text{-}SAT}(V)$	k' (μΑ/V ²)
NMOS	0.43	0.63	100
PMOS	0.4	1	25

These parameters are from re-fitting I vs. V data in Chapter 3 of the EECS 141 Text Book by Rabaey with saturation current model we are using in EE42. Here $V_{IN} = V_{DD}$

$$I_{OUT-SAT-D} = k_D (V_{IN} - V_{TD}) V_{OUT-SAT-D}$$
 is used to maximum I_{DS}

$$I_{OUT-SAT-D} = \left(100 \,\mu A/V^2\right) \left(\frac{0.375}{0.25}\right) (2.5V - 0.43V)(0.63V) = 196 \,\mu A$$

Voltage Transfer Function for the Lecture 23 0.25 µm CMOS Inverter

Copyright 2001, Regents of University of California

Lecture 23

Version Date 12/04/01

Finding V_M for 0.25 μm Inverter

At V_{M} ,

- $1) \quad \mathbf{V}_{\mathbf{OUT}} = \mathbf{V}_{\mathbf{IN}} = \mathbf{V}_{\mathbf{M}}$
- 2) Both devices are in saturation
- 3) $I_{OUT-SAT-n} = I_{OUT-SAT-p}$ Result will depend on (W/L) ratios. $I_{OUT-SAT-n} = k'_n \left(\frac{W}{L}\right)_n (V_{IN} V_{Tn}) V_{OUT-SAT-n} = I_{OUT-SAT-p} = k'_p \left(\frac{W}{L}\right)_p (V_{DD} V_{IN}) V_{Tp}) V_{OUT-SAT-p}$ Substitute V_{M} Solve for V_{M}

For $(W/L)_n = 1.5$ and $(W/L)_p = 3.0 V_M$ is 1.17V

Lecture 23

Version Date 12/04/01

CMOS Inverter in Short-Circuit Condition

Assume the CMOS inverter from above with $V_{IN} = 1.25V$ and $V_{OUT} = 1.25V$ driving a 10 fF capacitor

What happens to the output signal?

The capacitor slowly discharges to try to find an output voltage that balances the NMOS and PMOS currents for the given value of $V_{\rm IN}$.

$$\frac{\partial V}{\partial t} = \frac{I}{C} = \frac{13.7 \,\mu A}{10 \, fF} = 1.37 \big(V / ns \big)$$

$$I_{Discharge_Load} = 13.7 \mu A$$

(We Used $V_{IN} = V_{DD}/2$)

Study this page carefully as three starting point mistakes were corrected.

Version Date 12/04/01

Lecture 24

Example CMOS Circuit

Varsian Data 17/04/01

Lecture 24

Fanout

Fanout is always ≥ 1 (there is always a load)

Gate capacitances sum and are charged by the driver resistance

One load device was in included in the initial estimate of C_{LOAD} .

$$C'_{LOAD} = C_{LOAD} + (FO - 1)((W/L)_p + (W/L)_n)(C_{G/MS})$$

$$C'_{LOAD} = C_{LOAD} + (FO - 1)(1.5 + 3.0)(0.4 \text{ fF})$$

Assumes minimum length devices.

Lecture 25: 12/5/01 A.R. Neureuther

Lecture 24

Version Date 12/04/01

Coping with Power Consumption

D.C. POWER

a.c. POWER

Tube: $300V \times 20 \text{ mA} = 6W$

Bipolar Transistor: $5V \times 20 \text{ mA} = 200 \text{ mW}$

NMOS Transistor: $5V \times 200 \mu A = 1 \text{ mW}$

True of every gate!

CMOS Transistors: $5V \times 100 \text{ nA} = 0.5 \mu W$

P_{SHORT-CIRCUIT} = (1/2) $I_{SHORT-CIRCUIT}$ V_{DD} τ_{30-70} f_{CLOCK} Assumes ½ of the gates $= (1/2) (60 \ \mu A) \ 2.5 V (0.1 ns) (10^9) = 7.5 \ \mu W$ change state $P_{DYNAMIC} = (1/2)(1/2) \ C \ V_{DD}^2 \ f_{CLOCK}$ Only the L =>H $= (1/2) (1/2)(10 \ fF) (2.5)^2 \ 10^9 = 15.6 \ \mu W$ takes energy from V_{DD}

Combinatorial Logic and Clocked Latches: Signal Flow

