Supplement \#1: October 27, 2001

## Logic Circuit Supplement

A) Transistor Inverter Example
B) Terminology and Using $V_{\text {Out-sat-d }}$
C) States are Voltage Levels of $V_{\text {IN }}$
D) Single Equation $I_{\text {Out }}$ vs. $V_{\text {OUt }}$
E) Composite $I_{\text {OUT }}$ vs. $V_{\text {OUT }}$ for $R_{\text {PULL-UP }}$
F) Composite $I_{\text {OUT }}$ vs. $V_{\text {OUT }}$ for Active Pull-Up
G)Voltage Transfer Function and $\mathbf{V}_{\mathbf{M}}$

Version Date 10/27/01

## Transistor Inverter Example

It may be simpler to just think of PMOS and NMOS transistors instead of a general 3 terminal pull-up or pull-down device.


Copyright 2001, Regents of University of California

## Terminology



Copyright 2001, Regents of University of California

Version Date 10/27/01

## States are Voltage Levels of $\mathbf{V}_{\text {IN }}$



Copyright 2001, Regents of University of California

## Eliminating Point of Confusion

The use of $\mathrm{V}_{\mathrm{TD}}$ twice in the equation for $\mathrm{I}_{\text {OUT }}$ is confusing (although it eliminates an extra parameter).

$$
I_{O U T-P D}=k_{D}\left(V_{I N}-V_{T D}\right) V_{T D}
$$

Instead we add an extra parameter to distinguish between threshold for conduction which is determined by $V_{\text {IN }}$ reaching $V_{T D}$ and saturation of the current level when $V_{\text {out }}$ reaches $\mathbf{V}_{\text {out-sat-d }}$.

$$
I_{O U T-P D}=k_{D}\left(V_{I N}-V_{T D}\right) V_{O U T-S A T-D}
$$

## Single Equation EE42 NMOS Model

Current $I_{\text {OUT }}$ only flows when $V_{\text {IN }}$ is larger than the threshold value $V_{T D}$ and the current is proportional to $\mathbf{V}_{\text {OUT }} u p$ to $\mathbf{V}_{\text {OUt-sat-d }}$ where it reaches

$$
I_{O U T-P D}=k_{D}\left(V_{I N}-V_{T D}\right) V_{O U T-S A T-D}
$$

Note that we have added an extra parameter to distinguish between threshold ( $\mathrm{V}_{\mathrm{TD}}$ ) and saturation ( $\mathrm{V}_{\text {OUt-Sat-D }}$ ).

$$
\begin{aligned}
& \text { Example: } \\
& k_{D}=25 \mu \mathrm{~A} / \mathrm{V}^{2} \quad \text { Use these } \\
& \mathrm{V}_{\text {TD }}=\mathbf{1 V} \quad \text { values in the } \\
& \mathbf{V}_{\text {OUt-Sat-d }}=1 \mathrm{~V} \text { homework. } \\
& I_{O U T-P D}=25 \frac{\mu A}{V^{2}}(3 V-1 V) 1 V=50 \mu A
\end{aligned}
$$

## Single Equation EE42 PMOS Model

Current $I_{\text {OUT }}$ only flows when $V_{\text {IN }}$ is smaller than $V_{D D}$ minus the threshold value $V_{T U}$ and the current is proportional to $\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{OUT}}\right)$ up to $\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {OUT-SAT-U }}\right)$ where it reaches

$$
I_{O U T-P U}=k_{U}\left(V_{D D}-V_{I N}-V_{T U}\right) V_{O U T-S A T-U}
$$



## Composite $\mathrm{I}_{\text {OUT }}$ vs. V $_{\text {OUT }}$ for CMOS



Copyright 2001, Regents of University of California

## Voltage Transfer Function for the Complementary Logic Circuit



Copyright 2001, Regents of University of California

## Method for Finding $\mathbf{V}_{\mathbf{M}}$

At $\mathbf{V}_{\mathbf{M}}$,

1) $\mathbf{V}_{\text {OUT }}=V_{\text {IN }}=V_{M}$
2) Both devices are in saturation
3) $\mathbf{I}_{\text {OUT-PD }}=I_{\text {OUT-PU }}$

$$
\begin{aligned}
& I_{O U T-P D}=k_{D}\left(V_{I N}-V_{T D)}\right) V_{O U T-S A T-D} \\
& =I_{O U T-P U}=k_{U}\left(V_{D Q}-V_{I N}-V_{T U}\right) V_{O U T-S A T-U}
\end{aligned}
$$

Solve for $V_{M}$
Example Result: When $\mathbf{k}_{\mathrm{D}}=\mathbf{k}_{\mathrm{P}}, \mathbf{V}_{\text {OUt-SAT-D }}=\mathbf{V}_{\text {OUt-SAT-U }}$ and $V_{T D}=V_{T U}$, then $V_{M}=V_{D D} / 2$

Copyright 2001, Regents of University of California

