Supplement #1: October 27, 2001

Logic Circuit Supplement

- A) Transistor Inverter Example
- **B)** Terminology and Using V_{OUT-SAT-D}
- **C)** States are Voltage Levels of V_{IN}
- **D)** Single Equation I_{OUT} vs. V_{OUT}
- **E)** Composite I_{OUT} vs. V_{OUT} for R_{PULL-UP}
- F) Composite I_{OUT} vs. V_{OUT} for Active Pull-Up
- G)Voltage Transfer Function and $\boldsymbol{V}_{\boldsymbol{M}}$

Transistor Inverter Example

It may be simpler to just think of PMOS and NMOS transistors instead of a general 3 terminal pull-up or pull-down device.

Copyright 2001, Regents of University of California

Terminology

V_{DD} = Power supply voltage

Pull-Down Device = Device used to carry current from the output node to ground to discharge the output node to ground.

Pull-Up Device = Device used to carry current from the power supply to the output node to charge the output node to the power supply voltage.

I_{OUT} = Current into the pull down device

 V_{TD} = Value of V_{IN} at which the NMOS transistor begins to conduct.

 $V_{OUT-SAT-D}$ = Value of V_{OUT} beyond which the current I_{OUT} no longer increases in the NMOS.

States are Voltage Levels of V_{IN}

Copyright 2001, Regents of University of California

Eliminating Point of Confusion

The use of V_{TD} twice in the equation for I_{OUT} is confusing (although it eliminates an extra parameter).

$$I_{OUT-PD} = k_D \left(V_{IN} - V_{TD} \right) V_{TD}$$

Instead we add an extra parameter to distinguish between threshold for conduction which is determined by V_{IN} reaching V_{TD} and saturation of the current level when V_{OUT} reaches $V_{OUT-SAT-D}$.

$$I_{OUT-PD} = k_D (V_{IN} - V_{TD}) V_{OUT-SAT-D}$$

Copyright 2001, Regents of University of California

Single Equation EE42 NMOS Model

Current I_{OUT} only flows when V_{IN} is larger than the threshold value V_{TD} and the current is proportional to V_{OUT} up to $V_{OUT-SAT-D}$ where it reaches

$$I_{OUT-PD} = k_D (V_{IN} - V_{TD}) V_{OUT-SAT-D}$$

Note that we have added an extra parameter to distinguish between threshold (V_{TD}) and saturation ($V_{OUT-SAT-D}$).

Single Equation EE42 PMOS Model

Current I_{OUT} only flows when V_{IN} is smaller than V_{DD} minus the threshold value V_{TU} and the current is proportional to $(V_{DD}-V_{OUT})$ up to $(V_{DD}-V_{OUT-SAT-U})$ where it reaches

$$I_{OUT-PU} = k_U (V_{DD} - V_{IN} - V_{TU}) V_{OUT-SAT-U}$$

Composite I_{OUT} vs. V_{OUT} for CMOS

Copyright 2001, Regents of University of California

Voltage Transfer Function for the Complementary Logic Circuit V_{TD} State 1 for $V_{IN} = 1V$ 5 V_{OUT-SAT-U} Vertical section due to zero slope of I_{OUT} vs. V_{OUT} in the saturation $V_{OUT}(V)$ region of both devices. 3 **√**_M State 3 for $V_{IN} = 3V$ V_{OUT-SAT-D} State 5 for $V_{IN} = 5V$ 0 3 $V_{IN}(V)$

Copyright 2001, Regents of University of California

Method for Finding V_M

At V_M,

$$1) \quad V_{OUT} = V_{IN} = V_M$$

2) Both devices are in saturation

$$\mathbf{3)} \quad \mathbf{I}_{\mathbf{OUT}-\mathbf{PD}} = \mathbf{I}_{\mathbf{OUT}-\mathbf{PU}}$$

$$I_{OUT-PD} = k_D (V_{IN} - V_{TD}) V_{OUT-SAT-D}$$

= $I_{OUT-PU} = k_U (V_{DD} - V_{IN} - V_{TU}) V_{OUT-SAT-U}$
Substitute V_M
Solve for V_M

Example Result: When $k_D = k_P$, $V_{OUT-SAT-D} = V_{OUT-SAT-U}$ and $V_{TD} = V_{TU}$, then $V_M = V_{DD}/2$

Copyright 2001, Regents of University of California