Logic Circuit Supplement
A) Transistor Inverter Example
B) Terminology and Using $V_{OUT-SAT-D}$
C) States are Voltage Levels of V_{IN}
D) Single Equation I_{OUT} vs. V_{OUT}
E) Composite I_{OUT} vs. V_{OUT} for $R_{PULL-UP}$
F) Composite I_{OUT} vs. V_{OUT} for Active Pull-Up
G) Voltage Transfer Function and V_M
Transistor Inverter Example

It may be simpler to just think of PMOS and NMOS transistors instead of a general 3 terminal pull-up or pull-down device.
Terminology

\(V_{DD} \) = Power supply voltage

Pull-Down Device = Device used to carry current from the output node to ground to discharge the output node to ground.

Pull-Up Device = Device used to carry current from the power supply to the output node to charge the output node to the power supply voltage.

\(I_{OUT} \) = Current into the pull down device

\(V_{TD} \) = Value of \(V_{IN} \) at which the NMOS transistor begins to conduct.

\(V_{OUT-SAT-D} \) = Value of \(V_{OUT} \) beyond which the current \(I_{OUT} \) no longer increases in the NMOS.
States are Voltage Levels of V_{IN}

- **State 1 or $V_{IN} = 1V$**
- **State 3 or $V_{IN} = 3V$**
- **State 5 or $V_{IN} = 5V$**

The maximum voltage is V_{DD}

Current is flat (saturated) beyond $V_{OUT-SAT-D}$

Current is zero until V_{IN} is larger than V_{TD}

$V_{OUT}(V)$

Copyright 2001, Regents of University of California
Eliminating Point of Confusion

The use of V_{TD} twice in the equation for I_{OUT} is confusing (although it eliminates an extra parameter).

$$I_{OUT-PD} = k_D (V_{IN} - V_{TD}) V_{TD}$$

Instead we add an extra parameter to distinguish between threshold for conduction which is determined by V_{IN} reaching V_{TD} and saturation of the current level when V_{OUT} reaches $V_{OUT-SAT-D}$.

$$I_{OUT-PD} = k_D (V_{IN} - V_{TD}) V_{OUT-SAT-D}$$
Single Equation EE42 NMOS Model

Current I_{OUT} only flows when V_{IN} is larger than the threshold value V_{TD} and the current is proportional to V_{OUT} up to $V_{OUT-SAT-D}$ where it reaches

$$I_{OUT-PD} = k_D (V_{IN} - V_{TD}) V_{OUT-SAT-D}$$

Note that we have added an extra parameter to distinguish between threshold (V_{TD}) and saturation ($V_{OUT-SAT-D}$).

Example:

$k_D = 25 \mu A/V^2$

$V_{TD} = 1V$

$V_{OUT-SAT-D} = 1V$

$$I_{OUT-PD} = 25 \frac{\mu A}{V^2} (3V - 1V) lV = 50 \mu A$$

Use these values in the homework.
Single Equation EE42 PMOS Model

Current I_{OUT} only flows when V_{IN} is smaller than V_{DD} minus the threshold value V_{TU} and the current is proportional to $(V_{DD} - V_{OUT})$ up to $(V_{DD} - V_{OUT-SAT-U})$ where it reaches

$$I_{OUT-PU} = k_U (V_{DD} - V_{IN} - V_{TU}) V_{OUT-SAT-U}$$

Example:
$k_U = 20 \, \mu A/V^2$
$V_{TU} = 1V$
$V_{OUT-SAT-u} = 1V$

Use these values in the homework.

$I_{OUT-PD} = 20 \frac{\mu A}{V^2} (5V - 3V - 1V) V = 20 \mu A$

Copyright 2001, Regents of University of California
Composite I_{OUT} vs. V_{OUT} for CMOS

State 3 or $V_{IN} = 3V$

- PD current is flat (saturated) beyond $V_{OUT-SAT-D}$
- Pull-Down NMOS

- PU current is flat (saturated) below $V_{DD} - V_{OUT-SAT-D}$
- Pull-Up PMOS

The maximum voltage is V_{DD}

Solution
Voltage Transfer Function for the Complementary Logic Circuit

State 1 for $V_{IN} = 1V$

Vertical section due to zero slope of I_{OUT} vs. V_{OUT} in the saturation region of both devices.

State 3 for $V_{IN} = 3V$

State 5 for $V_{IN} = 5V$
Method for Finding V_M

At V_M,
1) $V_{OUT} = V_{IN} = V_M$
2) Both devices are in saturation
3) $I_{OUT-PD} = I_{OUT-PU}$

\[
I_{OUT-PD} = k_D (V_{IN} - V_{TD}) V_{OUT-SAT-D} = k_U (V_{DD} - V_{IN} - V_{TU}) V_{OUT-SAT-U}
\]

Substitute V_M

Solve for V_M

Example Result: When $k_D = k_P$, $V_{OUT-SAT-D} = V_{OUT-SAT-U}$ and $V_{TD} = V_{TU}$, then $V_M = V_{DD}/2$