EECS 42 – Introduction to Digital Electronics
Fall 2003, Prof. A. R. Neureuther
Dept. EECS, 510 Cory 642-4590
UC Berkeley Office Hours During Finals Listed Below
Course Web Site http://www-inst.EECS.Berkeley.EDU/~ee42/

Topical Coverage Final Exam
8-11 AM Friday, December 12 room TBA
Closed Book – Device Equations Provided
Bring Calculator, Paper provided

Review Session (3:30-5 PM), Wednesday, December 10 th, 289
Cory Review Session (3:30-5 PM), Thursday, December 11 th, 289

Office Hours: 8 th 11 IS, 9 th 11 EC & 3:30 EC, 10 th 11 IS, 11th 11 AN

Schwarz and Oldham Material followed by skills
Chapter 2: all except 2.4 Loop Analysis, 2.6 and 2.7, light on 2.5
 Node analysis of circuits with up to 8 branches, Voltage and current dividers

Chapter 3: all
 Equivalent circuits: Thevenin and Norton; Nonlinear loads and load lines

Chapter 4: all but only ideal op-amps
 Dependent sources, gain, input and out put impedance; Ideal Op-Amps; Comparators (L15).

Chapter 5: all light on 5.3 and very limited inductor circuits.

Chapter 8.1: Only 8.1 EE 40/42 solution method; KCL to get differential equation; pulses

Chapter 10: no flip-flops Gates and logic functions; Timing diagrams (L12)

Lectures 16-17, O&S pp. 522-524, 604-611 Static Logic with state dependent devices
 Device I vs. V curves and load line method; Static Power; Simple inverter and voltage
 transfer function; Complementary Pull-Up and Pull-Down (CMOS)

Lectures 18-22 O&S pp. 604-618 and viewgraphs: Dynamic Logic
 Dynamic (Transient) Switched Resistor Model and 0.69RC delay;
 Worst case propagation delay, Cascade propagation delay
 Use of Latches and designing clock delay

Lectures 23-24, O&S pp. 481-499, 511-527, 594-598, Device physics and models
 Diode equation, perfect rectifier and large signal models and use in circuits.
 Carrier motion as basis for conductance and conductance-resistance of MOS

Likely Exam Emphasis

Transient
Logic Functions and Timing Diagrams
Dependent Sources, Gain, Thevenin resistance
Ideal Op-Amps,
Load Lines and Static analysis of logic gates using I vs. V model
CMOS Logic Functions, Delay, Latches
Diode circuit analysis and signal processing, Gate controlled resistance

\[I_{OUT-SAT-D} = k_D (V_{IN} - V_{TD}) V_{OUT-SAT-D} \]
\[I_{OUT-SAT-U} = k_U (V_{DD} - V_{IN} - V_{TU}) V_{OUT-SAT-U} \]

When in circuit attached to \(V_{DD} \).

\[\sigma = qN\mu \]
\[R = \frac{L}{\sigma \cdot h \cdot w} = \left(\frac{1}{\sigma \cdot h} \right) \frac{L}{W} = R_{SHEET} \left(\frac{L}{W} \right) \]
\[k_D = \mu_n C_{OX} \left(\frac{W}{L} \right)_n \]
\[\mu_n = 500 \text{cm}^2 / \text{Vs} \]
\[\mu_p = 150 \text{cm}^2 / \text{Vs} \]

\[C_{ox} = \frac{r_{ox}}{l_{ox}} = \frac{8.85 \times 10^{-14} \text{F/cm}}{6 \times 10^{-7} \text{cm}} \approx 5.75 \times 10^{-7} \text{F/cm}^2 \]