EECS 42 Intro. electronics for CS Fall 2003

Lecture 1: 08/26/03 A.R. Neureuther

Version Date 08/25/03

EE 42 Introduction to Electronics for Computer Science Andrew R. Neureuther

Lecture #1: Overview and A/D Signals

Discussion Sections 293 Cory 102 M 11 Eric Cheung 103 M 3 Eric Cheung 106 W 11 Janie Zhou 107 Th 1 Janie Zhou 109 F 1 Isacc Seetho

Note: Due to enrollment preferences the following sections have been dropped: 101 M 9; 104 T 3:30; 105 W 10; 108 F 9

http://inst.EECS.Berkeley.EDU/~ee42/

Copyright 2003, Regents of University of California

EECS 42 Intro. electronics for CS Fall 2003

Lecture 1: 08/26/03 A.R. Neureuther

Version Date 08/25/03

Digital Signal Representations

Example: Possible digital representation for the sine wave signals, and highlighting our maximum possible $50\mu V$ sine wave

Amplitude in µV		Binary	
		representa	tion
1		000001	
2		000010	
3	?	000011	
4	?	000100	
5		000101	
etc.			
8		001000	
16		010000	
32		100000	What is 010011?
50 (= 32+16+2)		110010	
63		111111	

EECS 42 Intro. electronics for CS Fall 2003 Lecture 1: 08/26/03 A.R. Neureuther				
Are Voltages in a Digital Circuit "0's" and "1's" ? (continued)				
Clever encoding methods (as opposed to simple digital representation) can lead to cost, size, and performance advantages:				
Example: Telephone Dialing				
1950: "Pulse dialing" Six pulses represented 6, etc.				
 Improvement: "Tone dialing" Each number represented by a combination of tones (tones that are within the limited frequency bandwidth of telephones. 				
 Analog modem technology: Uses combination of amplitude and phase modulation to represent digital information. This is done because the telephone lines are filtered to stop all frequencies above 2kHz. Sending simple pulses would limit us to a few Kbits/sec maximum. 				
Copyright 2003, Regents of University of California				

EECS 42 Intro. electronics for CS Fall 2003	Lecture 1: 08/26/03 A.R. Neureuther				
	Version Date 08/25/03				
So need a computer scientist know about					
electronics ?					
(Impossible to answer, but)					
 Knowing something about physica (voltages and currents) can be us goes in and out of a computer, me 	al nature of information eful in understanding what emory, radio, etc				
 Knowing something about the electron be useful in understanding the and performance of working system 	ctronic devices (e.g. CMOS) e restrictions on size, weight ems.				
 Learning enough electronics to be performance and power calculatio understanding the limits of actual 	e able to carry out simple ns can be useful physical hardware.				
 Folks who know both hardware ar valuable in product design. (\$\$\$\$ 	nd software are extremely \$\$)				
Copyright 2003, Regents of University of California					