EE 42 Introduction to Electronics for Computer Science
Andrew R. Neureuther

Lecture #1: Overview and A/D Signals

Discussion Sections 293 Cory
102 M 11 Eric Cheung
103 M 3 Eric Cheung
106 W 11 Janie Zhou
107 Th 1 Janie Zhou
109 F 1 Isacc Seetho

Note: Due to enrollment preferences the following sections have been dropped:
101 M 9; 104 T 3:30; 105 W 10; 108 F 9

http://inst.EECS.Berkeley.EDU/~ee42/

EECS 42 Course Overview

Some questions will this course may answer:

- How do electronic circuits work (e.g. how do they amplify, how do they represent 1's and 0's, how do they perform logic)?
- What determines performance (e.g. why is the Intel P4 so slow and a power hog, and how will they fix it)?
- Why is CMOS dominant and why will it continue it's dominance (e.g. versus bipolar or new technologies)?
- What does CMOS look like (under the microscope)?
- What is the future prognosis for performance of computers?
- Why are analog circuits so important in this digital world?
Basic Circuit Analysis

\[I_1 - \frac{V_a}{R_1} - \frac{V_a}{R_2 + R_3} - \frac{V_a + V_2}{R_4} = 0 \]

PULSE SHAPE for TRANSIENTS

Example: Switch rises at \(t = 0 \), falls at \(t = 0.1, 1 \) or \(10 \) µsec (Do 1 µsec case)

Solution: for \(RC = 1 \) µsec: during the first rise \(V \) obeys:

\[V = 5[1 - e^{-\frac{t}{10^{-6}}}] \]

Thus at \(t = 1 \) µsec, rising voltage reaches

\[5[1 - e^{-1}] = 3.16 \text{ V} \]
TIMING DIAGRAM for LOGIC

Show transitions of variables vs time

Logic state

Note B becomes valid one gate delay after B switches.

Note that $(B \cdot C)$ becomes valid two gate delays after $B \& C$ switch, because the invert function takes one delay and the NAND function a second.

No change at $t = 3\tau$

Devices and I versus V Characteristics

<table>
<thead>
<tr>
<th>State</th>
<th>V_{THEVENIN} (Open Load)</th>
<th>I_{NORTON} (Open Load)</th>
<th>I_{NORTON} (200KΩ Load)</th>
</tr>
</thead>
<tbody>
<tr>
<td>State 1</td>
<td>20 V</td>
<td>20 μA</td>
<td>60 μA</td>
</tr>
<tr>
<td>State 2</td>
<td>3.3 V</td>
<td>3.3 V</td>
<td>3.3 V</td>
</tr>
</tbody>
</table>

Copyright 2003, Regents of University of California
EECS 42 - Mechanics

- Text Book – Schwarz and Oldham, 2nd ed., 1993
- Lectures - on web but **you must print your copies**
- Homework – Out Tuesday. Due 1PM Wednesday the next week in box in hall near 275 Cory (not accepted in class). Returned to you in Section. **You must do your own work.**
- Exams – Oct 2; Nov 6; in class, closed book, formula sheet provided. Final Dec 12 8-11AM
- Grading – 5% HW, 23% M1 and M2, 49% Final
- Web gives more details including lecture plan.
- Neureuther Office Hours: Tu&Th 10:30-11 100 GPB and M 1, Tu&Th 11-11:30, F 1 in 510 Cory
EE 43 is a Parallel Lab for EE 42

Why Take EECS 43 (The first lab)
- Get hands on electronics.
- You will do better in EE42.
- If you take any later labs (like CS150) you will be much better prepared.
- You will learn a few skills and make a robot

Analog versus Digital Electronics

- Most (but not all) observables are analog
 think of analog versus digital watches

- But the most convenient way to represent and transmit information electronically is digital
 think of audio recordings

- Analog/Digital and Digital/Analog conversion is essential (and nothing new)
 think of a piano keyboard

Lecture Material:
Oldham and Schwarz Chapter 0
Homework 1.1
Analog Example:

Analog signal (microphone voltage) representing piano key A (440 Hz).

- **50 microvolt 440 Hz signal**
- **25 microvolt 440 Hz signal**

Microphone voltage with normal key stroke

- **50 microvolt 220 Hz signal**

Microphone voltage with soft pedal

Analog signal representing piano A, but one octave below middle A (220 Hz)

Analog Signals

- May have very physical relationship to information presented
- In the simplest, are direct waveforms of information vs time
- In more complex cases, may have information modulated on a carrier as in AM or FM radio
1000 KHZ AM radio station signal (analog)

Amplitude Modulated Signal

<table>
<thead>
<tr>
<th>Time in microseconds</th>
<th>Signal in microvolts</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0.2</td>
</tr>
<tr>
<td>10</td>
<td>0.4</td>
</tr>
<tr>
<td>15</td>
<td>0.6</td>
</tr>
<tr>
<td>20</td>
<td>0.8</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>0.8</td>
</tr>
<tr>
<td>35</td>
<td>0.6</td>
</tr>
<tr>
<td>40</td>
<td>0.4</td>
</tr>
<tr>
<td>45</td>
<td>0.2</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: The period of the carrier is 1 µsec * (that is, the frequency is 1 MHz)

The period of the modulation is 25 µsec (that is, the frequency is 40 kHz)

The amplitude of the modulation is about 50% of the maximum possible

What is the equation of this waveform (just for fun)??

Digital Signal Representations

(Analog to Digital Conversion)

By using binary numbers we can represent any quantity. For example a binary two (10) could represent a 2 Volt signal. But we generally have to agree on some sort of “code” and the dynamic range of the signal in order to know the form and the minimum number of bits.

Example: We want to encode to an accuracy of one part in 64 (i.e. 1.5% precision).

Example: Possible digital representation for a pure sine wave of known frequency. We must choose maximum value and “resolution” or “error,” then we can encode the numbers. Suppose we want 1 µV accuracy of amplitude with maximum amplitude of 50 µV, We could use a simple pure binary code with 6 bits of information. (Why 6 bits…. What if we only use 5?)
Digital Signal Representations

Example: Possible digital representation for the sine wave signals, and highlighting our maximum possible 50µV sine wave

<table>
<thead>
<tr>
<th>Amplitude in µV</th>
<th>Binary representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>000001</td>
</tr>
<tr>
<td>2</td>
<td>000010</td>
</tr>
<tr>
<td>3</td>
<td>000011</td>
</tr>
<tr>
<td>4</td>
<td>000100</td>
</tr>
<tr>
<td>5</td>
<td>000101</td>
</tr>
<tr>
<td>etc.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>001000</td>
</tr>
<tr>
<td>16</td>
<td>010000</td>
</tr>
<tr>
<td>32</td>
<td>100000</td>
</tr>
<tr>
<td>50 (= 32+16+2)</td>
<td>110010</td>
</tr>
<tr>
<td>63</td>
<td>111111</td>
</tr>
</tbody>
</table>

What is 010011?

Digital Representations of Logical Functions

Digital signals also offer an effective way to execute logic. The formalism for performing logic with binary variables is called Switching Algebra or Boolean Algebra.

In switching algebra we have only “true” and “false” conditions, usually represented by binary 1 and 0, respectively. Thus stating that “A is true” and “B is false” is equivalent to stating \(A=1 \) and \(B=0 \).

The utility of switching algebra is that we can perform elaborate logical operations with simple Boolean arithmetic. All modern control systems are digital, utilizing this approach.

Thus digital electronics combines two important properties: 1) The ability to represent real functions by coding the information in digital form, and 2) The ability to control a system by a process of manipulation and evaluation of digital variables using switching algebra.
So Why Digital?

(For example, why CDROM audio vs vinyl recordings?)

- Digital signals can be transmitted, received, amplified, and re-transmitted with **no degradation**.
- Binary numbers are a natural method of expressing logical variables.
- Complex logical functions are easily expressed as binary functions (e.g., in control applications).
- Digital signals are easy to manipulate (as we shall see).
- With digital representation, we can achieve arbitrary levels of “dynamic range,” that is, the ratio of the largest possible signal to the smallest than can be distinguished above the background noise.
- Digital information is easily and **inexpensively stored** (in Disk, CDROM, DVD, RAM, ROM, EPROM, etc.), again with arbitrary accuracy.

Are Voltages in a Digital Circuit “0’s” and “1’s”?³

(For example, in a RAM or Microprocessor)

- Well, on a static basis we represent “0” by some voltage range (say 0 to 0.1V). And on a static basis we represent “1” by another voltage range (say 1.5 to 2.0V).
- So if nothing is changing, most of the nodes are at logical zero or one.
- But we are in a hurry to get the answer, so when the circuit is active we actually **evaluate the logical state before it reaches the static value** (just like the press evaluates the outcome of the election before all the votes are in). We are really dealing with analog information.
- Moreover in lots of circuits (such as RAMs) there are places where the signals are much smaller than the official logic assignments. These signals are **amplified** in linear (or nonlinear) fashion, a classical analog operation.
- If you use a modem connection to the internet, you are sending analog information to represent digital (to sneak by the bandwidth filters).
Are Voltages in a Digital Circuit “0’s” and “1’s”? (continued)

Clever encoding methods (as opposed to simple digital representation) can lead to cost, size, and performance advantages:

Example: Telephone Dialing

• 1950: “Pulse dialing” Six pulses represented 6, etc.

• Improvement: “Tone dialing” Each number represented by a combination of tones (tones that are within the limited frequency bandwidth of telephones.

• Analog modem technology: Uses combination of amplitude and phase modulation to represent digital information. This is done because the telephone lines are filtered to stop all frequencies above 2kHz. Sending simple pulses would limit us to a few Kbits/sec maximum.

So need a computer scientist know about electronics?

(Impossible to answer, but…)

• Knowing something about physical nature of information (voltages and currents) can be useful in understanding what goes in and out of a computer, memory, radio, etc

• Knowing something about the electronic devices (e.g. CMOS) can be useful in understanding the restrictions on size, weight and performance of working systems.

• Learning enough electronics to be able to carry out simple performance and power calculations can be useful understanding the limits of actual physical hardware.

• Folks who know both hardware and software are extremely valuable in product design. ($$$$$$)