EECS 42 Introduction to Electronics for

 Computer ScienceAndrew R. Neureuther
Lecture \#3 KCL, KVL, Circuit Elements

- Kirchhoff Current Law (and Bag case)
- Kirchhoff Voltage Law
- Circuit elements symbols and I vs. V graphs

Oldham and Schwarz: 2.1-2.2
http://inst.EECS.Berkeley.EDU/~ee42/

EECS 42 Intro. Digital Electronics Fall 2003

Suppose imbalance in currents is $1 \mu \mathrm{~A}=1 \mu \mathrm{C} / \mathrm{s}$ (net current entering node) Assuming that $\mathrm{q}=0$ at $\mathrm{t}=0$, the charge increase is $10^{-6} \mathrm{C}$ each second or $\quad 10^{-6} / 1.6 \times 10^{-19}=6 \times 10^{12}$ charge carriers each second

But by definition, the capacitance of a node to ground is ZERO because we show any capacitance as an explicit circuit element (branch). Thus, the voltage would be infinite ($\mathrm{Q}=\mathrm{CV}$).

Something has to give! In the limit of zero capacitance the accumulation of charge would result in infinite electric fields ... there would be a spark as the air around the node broke down.

Charge is transported around the circuit branches (even stored in some branches), but it doesn't pile up at the nodes

EECS 42	Intro. Digital Electronics Fall 2003	Lecture 3: 09/02/03 A.R. Neureuther

KIRCHHOFF'S CURRENT LAW
Circuit with several branches connected at a node:

(Sum of currents entering node) - (Sum of currents leaving node) $=0$ Alternative statements of KCL

1 "Algebraic sum" of currents entering node $=0$
where "algebraic sum" means currents leaving are included with a minus sign
2 "Algebraic sum" of currents leaving node $=0$ where currents entering are included with a minus sign

EECS 42 Intro. Digital Electronics Fall $2003 \quad$ Lecture 3: 09/02/03 A.R. Neureuther Version Date 08/31/03 KIRCHHOFF'S CURRENT LAW EXAMPLE

Currents entering the node: $24 \mu \mathrm{~A}$
Currents leaving the node: $-4 \mu \mathrm{~A}+10 \mu \mathrm{~A}+\mathrm{i}$

Three statements of KCL

$\sum_{\text {IN }} \mathrm{i}$ in $=\sum_{\text {OUT }}$ iout	$24=-4+10+\mathrm{i}$	\Rightarrow	$\mathrm{i}=18 \mu \mathrm{~A}$	
$\sum_{\text {ALL }} \mathrm{in}=0$	$24-(-4)-10-\mathrm{i}=0$	\Rightarrow	$\mathrm{i}=18 \mu \mathrm{~A}$	EQUIVALENT
\sum iout $=0$	$-24-4+10+\mathrm{i}=0$	\Rightarrow	$\mathrm{i}=18 \mu \mathrm{~A}$	

Example of the use of KCL

At node X :
Current into X from the left:

$$
\left(V_{1}-v_{X}\right) / R 1
$$

Current out of X to the right:
$v_{X} / R 2$

KCL: $\left(v_{1}-v_{X}\right) / R_{1}=v_{X} / R_{2}$
Given V_{1}, This equation can be solved for v_{X}
$v_{X}=V_{1} R 2 /(R 1+R 2) \quad$ Of course we just get the same result as we obtained from our series resistor formulation. (Find the current and multiply by R2)
$\begin{array}{rr}\text { EECS } 42 \text { Intro. Digital Electronics Fall 2003 } & \text { Lecture 3: 09/02/03 A.R. Neureuther } \\ \text { Version Date 08/31/03 }\end{array}$

BASIC CIRCUIT ELEMENTS

- Voltage Source
- Current Source
(always supplies some constant given voltage - like ideal battery)
(always supplies some constant given current)
- Resistor (Ohm's law)
- Wire ("short" - no voltage drop)
\#. Capacitor (capacitor law - based on energy storage
Specifying node voltages: Use one node as the implicit reference (the "common" node ... attach special symbol to label it)

Now single subscripts can label voltages:
e.g., v_{b} means $v_{b}-v_{e}, v_{a}$ means $v_{a}-v_{e}$, etc.


```
EECS 42 Intro. Digital Electronics Fall 2003 Lecture 3: 09/02/03 A.R. Neureuther
    Version Date 08/31/03
    IDEAL CURRENT SOURCE
```

"Complement" or "dual" of the voltage source: Current though branch is fixed and independent of the voltage across the branch

Actual current source examples - hard to find except in electronics (transistors, etc.), as we will see
upper-case I \rightarrow DC (constant) value
lower-case implies current could be time-varying i(t)

EECS 42 Intro. Digital Electronics Fall 2003 Lecture 3: 09/02/03 A.R. Neureuther
Version Date 08/31/03
CURRENT SOURCE I vs. V Graph

If i is positive then we are confined to quadrants 4 and 1 :

Remember the voltage across the current source can be any finite value (not just zero)

When both I and V are negative is the current source absorbing or releasing power?

And do not forget i can be positive or negative. Thus we can be in any quadrant.

