

	EECS 42 Intro. Digital Electro	nics, Fall 2003 Lecture 4: 09/04/03 A.R. Neureuther	
		Version Date 09/01/03	
BASIC CIRCUIT ELEMENTS			
		(always supplies some constant given	
Voltage Source		voltage - like ideal battery)	
	Current Source	(always supplies some constant given	
		(always supplies some constant given	
		current)	
	• Resistor	(Ohm's law)	
	• Wire	("short" – no voltage drop)	
	• Capacitor	(capacitor law – based on energy storage in	
		electric field of a dielectric $\$&0.51-52$	
	Inductor	(inductor law – based on energy storage in	
		magnetic field in space S&O 5.1-5.2)	

EECS 42 Intro. Digital Electronics, Fall 2003	Lecture 4: 09/04/03 A.R. Neureuther		
	Version Date 09/01/03		
ENERGY STORED IN A C	CAPACITOR (cont.)		
More rigorous derivation: During charging, the power flow is $v \cdot i$ into the capacitor, where i is into + terminal. We integrate the power from $t = 0$ ($v = 0$) to $t = end$ ($v = V$). The integrated power is the energy			
$E = \int_{t = t_{\text{Final}}}^{t = t_{\text{Final}}} v \cdot i dt = \int_{v = v_{\text{Final}}}^{v = v_{\text{Final}}} v = v_{\text{Initial}}$	$\frac{dq}{dt}dt = \begin{array}{c} v = V_{\text{Final}} & v \\ \int v dq & \\ v = V_{\text{Initial}} \end{array} v = \begin{array}{c} \downarrow \\ \downarrow $		
but $dq = C dv$. (We are using small q instead of Q to remind us that it is time varying . Most texts use Q.)			
$E = \int_{v = V_{\text{Final}}}^{v = V_{\text{Final}}} \int_{v = V_{\text{Initial}}}^{v = V_{\text{Final}}} 2 - \frac{1}{2} C V_{\text{Initial}}^2$			
Copyright 2003, Regents of University of California			

