EECS 42 Introduction to Electronics for Computer Science Andrew R. Neureuther

Lecture \#4 Capacitors; I vs. V

- Capacitors and Energy Stored
- Current versus Voltage for Circuits
- Equivalent Straight Line Circuits
- Thevenin; Norton

Schwarz and Oldham: 5.1-5.2; 3.1 http://inst.EECS.Berkeley.EDU/~ee42/

## BASIC CIRCUIT ELEMENTS

- Voltage Source
(always supplies some constant given voltage - like ideal battery)
- Current Source
(always supplies some constant given current)
- Resistor (Ohm's law)
- Wire
("short" - no voltage drop )
\# • Capacitor
(capacitor law - based on energy storage in electric field of a dielectric S\&O 5.1-5.2)
- Inductor
(inductor law - based on energy storage in magnetic field in space $\mathrm{S} \& \mathrm{O}$ 5.1-5.2)


## CAPACITOR CIRCUIT ELEMENT

Any two conductors $a$ and $b$ separated by an insulator with a difference in voltage $\mathrm{V}_{\mathrm{ab}}$ will have an equal and opposite charge on their surfaces whose value is given by $\mathrm{Q}=\mathrm{CV}_{\mathrm{ab}}$, where C is the capacitance of the structure, and the + charge is on the more positive electrode.

A simple parallel-plate capacitor is shown. If the area of the plate is A, the separation d , and the dielectric constant of the insulator is $\varepsilon$, the capacitance equals $\mathrm{C}=\mathrm{A} \varepsilon / \mathrm{d}$.

Symbol


Constitutive relationship: $\mathrm{Q}=\mathrm{C}\left(\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}\right)$. ( Q is positive on plate a if $\mathrm{V}_{\mathrm{a}}>\mathrm{V}_{\mathrm{b}}$ )


## CAPACITOR CURRENT/VOLTAGE



Charge and Current are related: Charge is the time integral of Current

So $i=\frac{\mathrm{dQ}_{\mathrm{a}}}{\mathrm{dt}}$ so $\quad i=\mathrm{C} \frac{\mathrm{dv}}{\mathrm{dt}}$ equivalent to $\mathrm{Q}=\mathrm{C} v$
where we use the associated reference directions.

Example: A 1 mA current into a 1 pF capacitance produces a voltage change rate of $1 \mathrm{~mA} / 1 \mathrm{pF}=1 \mathrm{~V} / \mathrm{ns}$

## ENERGY STORED IN A CAPACITOR

You might think the energy (in Joules) is QV, which has the dimension of joules. But during charging the average voltage was only half the final value of $V$.

Thus, energy is $\frac{1}{2} \boldsymbol{Q V}=\frac{1}{2} C V^{2}$

Example: A 1 pF capacitance charged to 5 volts has $1 / 2(5 \mathrm{~V})^{2}(\mathbf{1 p F})=12.5 \mathrm{pJ}$

## ENERGY STORED IN A CAPACITOR (cont.)

More rigorous derivation: During charging, the power flow is $v$. $i$ into the capacitor, where $i$ is into + terminal. We integrate the power from $t=0(v=0)$ to $t=$ end $(v=V)$. The integrated power is the energy

$$
\mathrm{E}=\int_{\mathrm{t}=\mathrm{t}_{\text {Initial }}}^{\mathrm{t}=\mathrm{t}_{\text {Final }}} \mathrm{v} \cdot \mathrm{idt}=\int_{\mathrm{v}=\mathrm{V}_{\text {Initial }} \mathrm{v}}^{\mathrm{v}} \mathrm{~V}=\mathrm{V}_{\text {Final }} \frac{\mathrm{dq}}{\mathrm{dt}} \mathrm{dt}=\quad \mathrm{v}=\int_{\mathrm{Final}} \mathrm{vdq}
$$


but $d q=C d v$. (We are using small $q$ instead of $Q$ to remind us that it is time varying. Most texts use Q.)

$$
\mathrm{E}=\int_{\mathrm{v}}^{\mathrm{v}}=\mathrm{V}_{\text {Initial }} \mathrm{Cvdv}=\frac{1}{2} \mathrm{CV}_{\text {Final }} 2-\frac{1}{2} \mathrm{CV}_{\text {Initial }} 2
$$



## Add Currents

$$
i(t)=C_{1} \frac{d V}{d t}+C_{2} \frac{d V}{d t}
$$

Equivalent capacitance defined by

$$
\mathrm{i}=\mathrm{C}_{\mathrm{eq}} \frac{\mathrm{dV}}{\mathrm{dt}}
$$



Clearly, $\mathrm{C}_{\mathrm{eq}}=\mathrm{C}_{1}+\mathrm{C}_{2} \quad$ CAPACITORS IN PARALLEL
Example: $\mathbf{1} \mathbf{p F}$ and $\mathbf{2 p F}$ in parallel $=\mathbf{3} \mathbf{p F}$

CAPACITORS IN SERIES



Add Voltages
Equivalent to


Equivalent capacitance defined by
$V_{e q}=V_{1}+V_{2}$ and $i=C_{e q} \frac{d V_{e q}}{d t}=C_{e q} \frac{d\left(V_{1}+V_{2}\right)}{d t}$
$\mathrm{i}=\mathrm{C}_{1} \frac{\mathrm{dV}_{1}}{\mathrm{dt}}=\mathrm{C}_{2} \frac{\mathrm{dV}_{2}}{\mathrm{dt}}$
so $\frac{\mathrm{dV}_{\mathrm{eq}}}{\mathrm{dt}}=\mathrm{i}\left(\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}\right) \equiv \frac{\mathrm{i}}{\mathrm{C}_{\mathrm{eq}}}$
So $\frac{\mathrm{dV}_{1}}{\mathrm{dt}}=\frac{\mathrm{i}}{\mathrm{C}_{1}}, \quad \frac{\mathrm{dV}_{2}}{\mathrm{dt}}=\frac{\mathrm{i}}{\mathrm{C}_{2}}$,
CAPACITORS IN SERIES
Clearly, $\mathrm{C}_{\mathrm{eq}}=\frac{1}{\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}}=\frac{\mathrm{C}_{1} \mathrm{C}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}$
Example: $1 \mathbf{p F}$ and $\mathbf{2 p F}$ in series $=0.67 \mathbf{p F}$

## INDUCTOR CIRCUIT ELEMENT



Constitutive relationship Magnetic Flux $=\mathbf{L i}_{\mathbf{L}}$
Time-rate of change of flux $=$ Voltage
$V_{a b}=\mathbf{L d i} / \mathbf{d t}$
Energy $=1 / 2\left(\mathbf{L}\left(i_{L}\right)^{2}\right)$

In EE42 we do not analyze circuits with inductance due to the time limitations

## Capacitance and Inductance

- Capacitors: two plate example; Store energy in the electric field $\mathrm{Q}=\mathrm{CV}, \mathrm{I}=\mathrm{CdV} / \mathrm{dt}$ and $\mathrm{V}=(1 / \mathrm{C})$ integral of voltage 1 mA current charging $1 \mathrm{pF} \mathrm{V}(\mathrm{t})=(\mathrm{I} / \mathrm{C}) \mathrm{t}=\left(10-3 \mathrm{~A} / 10^{-12} \mathrm{~F}\right) \mathrm{t}=10^{9} \mathrm{~V} / \mathrm{st}$
- Energy $=1 / 2\left(\mathrm{CV}^{2}\right)($ because average voltage is $\mathrm{V} / 2)$
- At D.C. time derivatives are zero $=>\mathrm{C}$ is open circuit
- C in parallel add; series $1 / \mathrm{C}=\operatorname{sum}\left(1 / \mathrm{C}_{\mathrm{i}}\right)$; short together (infinite current but conserve charge)
- Inductors: coil example; Store energy in the magnetic field; Flux $=\mathrm{LI}, \mathrm{V}=\mathrm{L} \mathrm{dI} / \mathrm{dt}$ and $\mathrm{I}=(1 / \mathrm{L})$ (integral of voltage)
- At D.C. time derivatives are zero $=>$ L is short circuit
- $L$ in parallel $1 / L=\operatorname{sum}\left(1 / L_{i}\right)$; series add; connect in series when have different currents $=>\mathrm{L}_{1} \mathrm{I}_{1}+\mathrm{L}_{2} \mathrm{I}_{2}=\left(\mathrm{L}_{1}+\mathrm{L}_{2}\right) \mathrm{I}_{\text {NEW }}$


## EXAMPLE of I vs V GRAPH <br> Version Date 09/01/03

## Resistors in Series

If two resistors are in series the current is the same; clearly the total voltage will be the sum of the two $I R$ values i.e. $I\left(R_{1}+R_{2}\right)$.
Thus the equivalent resistance is $R_{1}+R_{2}$ and the $I-V$ graph of the series pair is the same as that of the equivalent resistance.
Of course we can also find the I-V graph of the combination by adding the voltages directly on the $\mathrm{I}-\mathrm{V}$ axes. Lets do an example for $1 \mathrm{~K}+4 \mathrm{~K}$ resistors


1
4
2


At 1 mA $1 V+4 V=5 V$

Resistors in series add voltages

Resistors in parallel add currents

If two circuit elements are in series the current is the same; clearly the total voltage will be the sum of the voltages i.e. $\mathrm{V}_{\mathrm{S}}+\mathrm{IR}$.

We can graph this on the I-V plane. We find the I-V graph of the combination by adding the voltages $\mathrm{V}_{\mathrm{S}}$ and I R at each current I.
Lets do an example for $=2 \mathrm{~V}, \mathrm{R}=2 \mathrm{~K}$



At 2 mA $2 V+4 V=6 V$

[^0]GRAPHICAL EQUIVALENT CIRCUIT

$\mathrm{I}_{\mathrm{SS}}=1 \mathrm{~mA}$
$\mathrm{R}_{1}=1 \mathrm{k} \Omega$
Short Circuit : $\mathrm{V}_{\text {out }}=0$
R2 $=6 \mathrm{k} \Omega$
$\mathbf{R 3}=\mathbf{3 k} \Omega$

Combined Circuit
Open Circuit: $\mathrm{I}_{\text {IN }}=0$
Note $\mathrm{R} 1|\mid \mathrm{R} 2=2 \mathrm{k} \Omega$
$\mathbf{V}_{\text {OUT }}=I_{\text {SS }} \mathbf{R 1 | | R 2}$

$$
=1 \mathrm{~mA} 2 \mathrm{k} \Omega=2 \mathrm{~V}
$$

Third Point
$\mathrm{I}_{\text {IN }}=1 \mathrm{~mA}$
$\mathrm{KCL} \Rightarrow \mathrm{I}_{2| | 3}=\mathrm{I}_{\text {SS }}+\mathrm{I}_{\text {IN }}$
$\mathbf{V}_{\text {OUT }}=\mathbf{I}_{2| | 3} \mathbf{R}_{1} \| \mathbf{R}_{2}$
$=2 \mathrm{~mA} 2 \mathrm{k} \Omega=4 \mathrm{~V}$
Key: It will always be the case that for linear circuit elements the $I$ vs. $V$ is a straight line.

## SIMPLEST EQUIVALENT CIRCUITS



$$
V_{T H}=V_{O C}=2 V
$$


$I_{N}=-I_{S C}=-(-1 \mathbf{m A})=1 \mathrm{~mA}$
Norton
An adequately equivalent circuit is one that has an I vs. V graph that is identical to that of the original circuit.
$R_{T H}$ is the inverse of the slope

Thevenin

$$
\mathbf{R}_{\mathrm{TH}}=\mathbf{R}_{\mathrm{N}}=\mathrm{V}_{\mathrm{OC}} /\left(-\mathrm{I}_{\mathrm{SC}}\right)=2 \mathrm{~V} /(-(-1 \mathrm{~mA}))=2 \mathrm{k} \Omega
$$

$$
\mathbf{R}_{\mathrm{TH}}=\mathbf{R}_{1} \| \mathbf{R}_{2}
$$

## $\mathbf{R}_{\text {TH }}=\mathbf{R}_{\mathrm{N}}$ SHORTCUT METHOS

$$
\begin{aligned}
& \square{ }^{\text {A }} \text { Look at algebraic relation for the example circuit. } \\
& \mathbf{V}_{\mathrm{OC}}=\mathbf{I}_{\mathrm{SS}} \mathbf{R}_{1} \| \mathbf{R}_{2} \\
& I_{S C}=-I_{S S} \\
& \mathbf{R}_{\mathrm{TH}}=\mathbf{R}_{\mathrm{N}}=\mathbf{V}_{\mathrm{OC}} /\left(-\mathrm{I}_{\mathrm{SC}}\right) \\
& \mathbf{R}_{\mathrm{TH}}=\mathbf{R}_{\mathrm{N}}=\left(\mathbf{I}_{\mathrm{SS}} \mathbf{R}_{1} \| \mathbf{R}_{2}\right) /\left(-\left(-\mathrm{I}_{\mathrm{SS}}\right)\right)=\mathbf{R}_{1} \| \mathbf{R}_{2}
\end{aligned}
$$

In General turn all of the independent sources to zero and find the remaining equivalent resistance seen looking into the terminals.

Currents sources are turned to zero current (with any voltage) and voltage sources are turned to zero voltage (with any current).

## I vs. V and Equivalent Circuits

- I vs. V for ideal voltage source is a vertical line at $\mathrm{V}=\mathrm{V}_{\mathrm{SV}}$
- I vs. V for ideal current source is a horizontal line at $\mathrm{I}=\mathrm{I}_{\mathrm{SC}}$
- I vs. V for a circuit made up of ideal independent sources and resistors is a straight line.
- The simplest circuit for a straight line is an ideal voltage source and a resistor (Thevenin) or a current source and a parallel resistor (Norton)
- The easiest way to find the I vs. V line is to find the intercepts where $\mathrm{I}=0$ (open circuit voltage $\mathrm{V}_{\mathrm{T}}$ ) and where $\mathrm{V}=0$ (Short circuit current $\mathrm{I}_{\mathrm{N}}$ )
- The short-cut for finding the (slope) $)^{-1}=\mathrm{R}_{\mathrm{T}}=\mathrm{R}_{\mathrm{N}}$ is to turn off all of the independent sources to zero and find the remaining equivalent resistance between the terminals of the elements.


[^0]:    Copyright 2003, Regents of University of Californi

