Lecture #5

- Recap I vs. V
- Thevenin and Norton Eq. Circuits
- Load Line Graphical Solution
- Nonlinear elements and power

Schwarz and Oldham 3.1-3.3

http://inst.EECS.Berkeley.EDU/~ee42/

EXAMPLE of I vs V GRAPH

Simple Circuit, e.g. voltage source + resistor.

If two circuit elements are in series the current is the same; clearly the total voltage will be the sum of the voltages i.e. \(V_S + IR \).

We can graph this on the I-V plane. We find the I-V graph of the combination by adding the voltages \(V_S \) and \(IR \) at each current \(I \).

Let's do an example for \(V_S = 2V \), \(R = 2k \)

Combined Circuit

\(V(\text{Volt}) \)

\(I \) (mA)

\[2 \]

\[4 \]

\[5 \]

\(2V \)

\(2k \)

\(2 \)

\(4 \)

\[5 \]

IIN

\(VOUT \)

\(5 \)

\(4 \)

\[2 \]

\(1 \)

\(-\)

\(+\)

\(+\)

\(-\)

\(\times \)

\(\text{At 2 mA} \)

\(2V + 4V = 6V \)

GRAPHICAL EQUIVALENT CIRCUIT

\[I_{\text{IN}} = 1 \text{mA} \]

\[R_1 = 6k \Omega \]

\[R_2 = 3 \text{k}\Omega \]

\[R_3 = 2 \text{k}\Omega \]

\[V_{\text{OC}} = 2V \]

\[I_{\text{SC}} = 1mA \]

\[R_{\text{TH}} = \frac{V_{\text{OC}}}{-I_{\text{SC}}} = \frac{2V}{-1mA} = 2k \Omega \]

\[V_{\text{TH}} = V_{\text{OC}} = 2V \]

\[I_{\text{IN}} = -I_{\text{SC}} = 1mA \]

\[R_{\text{TH}} \text{ is the inverse of the slope} \]

\(R_{\text{TH}} = R_{\text{N}} = \frac{V_{\text{OC}}}{/(-I_{\text{SC}})} = 2V/(-(-1mA)) = 2k \Omega \)

In General turn all of the independent sources to zero and find the remaining equivalent resistance seen looking into the terminals.

Currents sources are turned to zero current (with any voltage) and voltage sources are turned to zero voltage (with any current).
I vs. V and Equivalent Circuits

- I vs. V for ideal voltage source is a vertical line at V = V\text{SV}.
- I vs. V for ideal current source is a horizontal line at I = I\text{SC}.
- I vs. V for a circuit made up of ideal independent sources and resistors is a straight line.
- The simplest circuit for a straight line is an ideal voltage source and a resistor (Thevenin) or a current source and a parallel resistor (Norton).
- The easiest way to find the I vs. V line is to find the intercepts.
- The simplest circuit for a straight line is an ideal voltage source and a resistor (Thevenin) or a current source and a parallel resistor (Norton).
- The easiest way to find the I vs. V line is to find the intercepts.
- The short-cut for finding the (slope) \(-1 = R_T = R_N\) is to turn off all of the independent sources to zero and find the remaining equivalent resistance between the terminals of the elements.

Example of I-V Graphs

Nonlinear element, e.g., light bulb

If we think of the light bulb as a sort of resistor, then the resistance changes with current because the filament heats up. The current is reduced (sort of like the resistance increasing). "Sort of" because a resistor has, by definition a linear I-V graph and R is always the same. But for a light bulb the graph kind of "rolls over", becoming almost flat. Consider a 100 Watt bulb, which means at the nominal line voltage of 117 V the current is 0.85A. (117 V times 0.85 A = 100W).

\[I = 0.85A \text{ at } 117V \]

I-V Graphs as a method to solve circuits

We can find the currents and voltages in a simple circuit graphically. For example if we apply a voltage of 2.5V to the two resistors of our earlier example:

We draw the I-V of the voltage and the I-V graph of the two resistors on the same axes. Can you guess where the solution is?

At the point where the voltages of the two graphs AND the currents are equal, in other words we have the solution.

\[\text{Solution: } I = 0.5mA, V = 1.4V \]

The Load-Line Method

Given a circuit containing a two-terminal non-linear element "NLE", and some linear components.

First replace the entire linear part of the circuit by its Thevenin equivalent (which is a resistor in series with a voltage source).

Then define I and V at the NLE terminals (typically associated signs)

The intersection gives circuit solution

\[\text{The solution } \]

Example of Load-Line method (cont')
Power Calculation Review

Power is calculated the same way for linear and non-linear elements and circuits.

For any circuit or element the dc power is \(I \times V \) and, if associated signs are used, represents heating for positive power or extraction of energy for negative signs.

For example in the last example the NLE has a power of \(+1V \times 5\mu A \) or \(5\mu W \). It is absorbing power. The rest of the circuit has a power of \(-1V \times 5\mu A = -5\mu W \), because the signs are unassociated. It is delivering the \(5\mu W \) to the NLE.

So what is the power absorbed by the 200K resistor?

Answer: \(I \times V = 5\mu A \times (5\mu A \times 200K) = 5\mu W \). Then the voltage source must be supplying a total of \(10\mu W \). Can you show this?

Load-Line method

The method is graphical, and therefore approximate. But if we use equations instead of graphs, it could be accurate.

It can also be used to find solutions to circuits with three terminal nonlinear devices (like transistors) for which the third input controls the device state.