EECS 42 Introduction Digital Electronics Andrew R. Neureuther

Lecture \#8 Node Equations

- Systematic Node Equations
- Example: Voltage and Current Dividers
- Example 5 Element Circuit

Schwarz and Oldham 53-58, 2.5, \& 2.6
Quiz 9/25 20 min:
Basic Circuit Analysis and Basic Transient Midterm 10/2: Lectures \# 1-9: 4 Topics - See slide 2 Length/Credit Review TBA http://inst.EECS.Berkeley.EDU/~ee42/

- Basic Circuit Analysis (KVL, KCL)
- Equivalent Circuits and Graphical Solutions for Nonlinear Loads
- Transients in Single Capacitor Circuits
- Node Analysis Technique and Checking Solutions

Exam is in class 9:40-10:45 AM, Closed book, Closed notes, Bring a calculator, Paper provided

- Midterm Options
- Option 1: 65 min and 23% of grade in course (Final is 49\%)
- Option 2: 80 min and 28\% of grade in course (Final is 39\%)
- Review Options
- Date Tu 9/30 or Wed 10/1
- Time 5-6:30 PM or Other

FORMAL CIRCUIT ANALYSIS

Systematic approaches to writing down KCL and KVL: Section 2.3 of
Text - In particular use of KCL gives NODAL ANALYSIS

Mathematical foundation is rigorous: EE 104 Circuit Theory
\(\left.\begin{array}{l}Nodal Analysis: Node voltages are the unknowns

Mesh Analysis: Branch currents are the unknowns\end{array}\right\}\)| Use one or the |
| :---: |
| other for circuit |
| analysis |

We will do only nodal analysis - (because voltages make more convenient variables than currents) Thus omit Text Section 2.4 ; it is redundant.

Version Date 09/14/03
 THE IV CHARACTERISTICS OF AN ELEMENT ALLOW

 EITHER NODAL OR MESH (LOOP) ANALYSIS REVIEW FOR A RESISTOR: OHM'S Law

If we use associated current and voltage (i.e., i is defined as into + terminal), then $\quad v=i R$ (Ohm's law)

Another version of the same statement, and the one most important to us:
$\mathrm{i}=\left(\mathrm{V}_{\mathrm{Z}}-\mathrm{V}_{\mathrm{Y}}\right) / \mathrm{R}$ (Ohm's law) NOTE ORDER OF NODES: $V_{Z}-V_{Y}$!

FORMAL CIRCUIT ANALYSIS USING KCL:

NODAL ANALYSIS

(Memorize these steps and apply them rigorously!)
1 Choose a Reference Node $\stackrel{\downarrow}{=}$
2 Define unknown node voltages (those not fixed by voltage sources)

3 Write KCL at each unknown node, expressing current in terms of the node voltages (using the constitutive relationships of branch elements*)

4 Solve the set of equations (N equations for N unknown node voltages)

[^0]
NODAL ANALYSIS USING KCL

 -Example: The Voltage Divider -1 Choose reference node

2 Define unknown node voltages

3 Write KCL at unknown nodes

4 Solve:

$$
\mathrm{V}_{2}=\mathrm{V}_{\mathrm{SS}} \cdot \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}
$$

This is of course the voltage divider formula and is by itself very useful.

RESISTORS IN PARALLEL

1 Select Reference Node
2 Define unknown node voltages

Note: $I_{s s}=I_{1}+I_{2}$, i.e.,

RESULT 1 EQUIVALENT RESISTANCE: $R_{\|} \equiv R_{1} \| R_{2}={ }_{n}{ }_{n} R_{1} R_{2}$
RESULT 2 CURRENT DIVIDER:

$$
\begin{aligned}
& \mathrm{I}_{1}=\begin{array}{l}
\mathrm{Vx} \\
\mathrm{R} 1
\end{array}=\mathrm{Iss} \times \frac{\mathrm{R}^{2}}{\mathrm{R}_{1}+\mathrm{R}^{2}} \\
& \mathrm{I}^{2}=\frac{\mathrm{Vx}}{\mathrm{~V}_{n}}=\mathrm{Iss} \times \frac{\mathrm{R} 1}{n}
\end{aligned}
$$

GENERALIZED VOLTAGE DIVIDER

 (solved without Nodal Analysis)Circuit with several resistors in series

- We know

$$
\mathrm{I}=\mathrm{V}_{\mathrm{SS}} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\mathrm{R}_{4}\right)
$$

- Thus,

$$
\mathrm{V}_{1}=\frac{\mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\mathrm{R}_{4}} \cdot \mathrm{~V}_{\mathrm{SS}}
$$

and

$$
\mathrm{V}_{3}=\frac{\mathrm{R}_{3}}{\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\mathrm{R}_{4}} \cdot \mathrm{~V}_{\mathrm{SS}}
$$

etc.. etc..

WHEN IS VOLTAGE DIVIDER FORMULA CORRECT?

$\mathrm{V}_{2}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\mathrm{R}_{4}} \cdot \mathrm{~V}_{\mathrm{SS}}$
Correct if nothing else
connected to nodes

$$
\mathrm{V}_{\mathrm{Z}} \neq \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\mathrm{R}_{4}} \cdot \mathrm{~V}_{\mathrm{SS}}
$$

because R_{5} removes condition of resistors in series - i.e. $\mathrm{i}_{3} \neq \mathrm{I}$

What is V_{z} ?

IDENTIFYING SERIES AND PARALLEL COMBINATIONS

Use series/parallel equivalents to simplify a circuit before starting KVL/KCL

Please note the order of math operators here!

Some circuits must be analyzed (not amenable to simple inspection)

Special cases:

$$
\mathrm{R}_{3}=0 \quad \mathrm{OR} \quad \mathrm{R}_{3}=\infty
$$

Example: $R_{3}=0 \Rightarrow R_{1}\left\|R_{2} ; R_{4}\right\| R_{5}$ in series; $\quad R_{e q}=R_{1}\left\|R_{2}+R_{4}\right\| R_{5}$ OR IF $R_{3}=\infty \Rightarrow\left(R_{1}+R_{5}\right) \|\left(R_{2}+R_{4}\right)$

ANOTHER EXAMPLE OF NODAL ANALYSIS

Choose a reference node and define the node voltages (except reference node and the one set by the voltage source);
node voltage known

Apply KCL:

$$
\begin{aligned}
& \frac{V_{a}-V_{1}}{R_{1}}+\frac{V_{a}-V_{b}}{R_{3}}+\frac{V_{a}}{R_{2}}=0 \\
& \frac{V_{b}-V_{a}}{R_{3}}+\frac{V_{b}}{R_{4}}-I_{S}=0
\end{aligned}
$$

Note the systematic use of the present node minus each of the other nodes divided by the element resistance that connects them.
You can solve for V_{a}, V_{b}.

EXAMPLE 1: Thevenin/Norton

Find the Thévenin and Norton equivalents of:

equivalent to

and equivalent to

EECS 42 Intro. Digital Electronics Fall 2003

Lecture 8: 09/18/03 A.R. Neureuther

EXAMPLE 1 Thevenin/Norton Continued Version Date 09/14/03

They have identical I-V characteristics and therefore have
The same open circuit voltage
The same short circuit current

EXAMPLE 2 Thevenin/Norton

Version Date 09/14/03

Find the Thévenin and Norton equivalents of:

[^0]: * With inductors or floating voltages we will use a modified Step 3: The Supernode Method - see Lecture \#8

