EECS 42 Intro. Digital Electronics Fall $2003 \quad$ Lecture 9: 09/23/03 A.R. Neureuther

EECS 42 Introduction to Digital Electronics Andrew R. Neureuther
 Lecture \#9 Prof. King: Node Equations Advanced

- Supernode for voltage supplies
- Checking Solutions

Schwarz and Oldham 53-58, 2.5 and 2.6
Quiz 9/25 20 min:
Basic Circuit Analysis and Basic Transient
Midterm 10/2: Lectures \# 1-9: ForTopics - See slide 2 Length/Credit Review TBA
http://inst.EECS.Berkeley.EDU/~ee42/

EECS 42 Intro. Digital Electronics Fall $2003 \quad$ Lecture 9: 09/23/03 A.R. Neureuther

First Midterm Exam: Topics

- Basic Circuit Analysis (KVL, KCL)
- Equivalent Circuits and Graphical Solutions for Nonlinear Loads
- Transients in Single Capacitor Circuits
- Node Analysis Technique and Checking Solutions
Exam is in class 9:40-10:45 AM, Closed book, Closed notes, Bring a calculator, Paper provided

NODAL ANALYSIS WITH "FLOATING" VOLTAGE SOURCES
A "floating" voltage source is a voltage source for which neither side is connected to the reference node. V_{LL} in the circuit below is an example.

What is the problem? \rightarrow We cannot write KCL at node a or b because there is no way to express the current through the voltage source in terms of $\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}$.
Solution: Define a "supernode" - that chunk of the circuit containing nodes a and b. Express KCL at this supernode.

| EECS 42 Intro. Digital Electronics Fall 2003 | Lecture 9: 09/23/03 A.R. Neureuther |
| ---: | ---: | ---: |
| Review for Quiz 9/25 | Version Date 09/14/03 |

$\mathrm{R}_{\mathrm{TH}}=\mathrm{R}_{\mathrm{N}}$ SHORTCUT METHODS

$$
\begin{aligned}
& \square_{R_{1},}^{A} \text { Look at algebraic relation for the example circuit. }
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{V}_{\text {OC }}=\mathbf{I}_{\text {SS }} \times \mathbf{R}_{2} \| \mathbf{R}_{3} \\
& \mathrm{I}_{\mathrm{SC}}=-\mathrm{I}_{\mathrm{SS}} \\
& \mathbf{R}_{\mathrm{TH}}=\mathbf{R}_{\mathrm{N}}=\mathbf{V}_{\mathrm{OC}} /\left(-\mathrm{I}_{\mathrm{SC}}\right) \\
& \mathbf{R}_{\mathrm{TH}}=\mathbf{R}_{\mathrm{N}}=\left(\mathbf{I}_{\mathrm{SS}} \times \mathbf{R}_{2} \| \mathbf{R}_{3}\right) /\left(-\left(-\mathbf{I}_{\mathrm{SS}}\right)\right)=\mathbf{R}_{2} \| \mathbf{R}_{3}
\end{aligned}
$$

In General turn all of the independent sources to zero and find the remaining equivalent resistance seen looking into the terminals.
Currents sources are turned to zero current (with any voltage)
\Rightarrow OPEN CIRCUIT. Voltage sources are turned to zero voltage (with any current) $=>$ SHORT CIRCUIT.

KCL at the Supernode:
Clearly the current into the supernode is zero and we have verified that the solution is correct. :


```
EECS 42 Intro. Digital Electronics Fall 2003
    Lecture 9: 09/23/03 A.R. Neureuther
    Review for Quiz 9/25

Last Time:
We learned that simple the
simple RC circuit with a step
input has a universal
exponential solution of the form:
\[
V_{\text {out }}=A+B e^{-t / R C}
\]


Example \(0: R=1 K, C=1 p F, V_{\text {in }}\) steps from zero to 10 V at \(\mathrm{t}=0\) :
1) Initial value of \(V_{\text {out }}\) is 0
2) Final value of \(V_{\text {out }}\) is 10 V
3) Time constant is \(R C=10^{-9} \mathrm{sec}\)
4) \(V_{\text {out }}\) reaches \(0.63 \times 10\) in \(10^{-9} \mathrm{sec}\)

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{12}{*}{\begin{tabular}{l}
Review for Quiz 9/25 \\
Version Date 09/14/03 \\
Charging and discharging in RC Circuits \\
Find \(\mathrm{Vc}(\mathrm{t})\) for the following circuit: (input switches from 2 V to -1 V at \(\mathrm{t}=0\) ) \\
We have : Initial value of Vc is 2 V , final value is -1 V and \(\tau=20 \mathrm{nsec}\) \\
5) Sketch Vc (t) : \\
What is the equation for an exponential beginning at 2 V , decaying to -1 V , with \(\tau=20 \mathrm{nsec}\) ? \\
\(37 \%\) of transient remaining at one time constant
\[
\begin{aligned}
& \mathbf{V}_{\text {FINAL }}= \\
& \mathbf{V}_{\text {INITIAL }}= \\
& \mathbf{B}=\mathbf{V}_{\text {INTIAL }}-\mathbf{V}_{\text {FINAL }}=
\end{aligned}
\]
\end{tabular}}} \\
\hline & \\
\hline
\end{tabular}```

