

EECS 42 Intro. Digital Electronics Fall 2003	Lecture 10: 09//25/03 A.R. Neureuther		
Logic Funct	ions Version Date 09/14/03		
Logic Expression: To create logic values we will define "True",as Boolean 1 and "False",as Boolean 0.			
Moreover we can associate a logic variable with a circuit node. Typically we associate logic 1 with a high voltage (e.g. 2V) and and logic 0 with a low voltage (e.g. 0V).			
Example: The logic variable H is true (H=1) if (A and B and C are 1) or T is true (logic 1), where all of A,B,C and T are also logical variables.			
Logic Statement: H = 1 if A and B	3 and C are 1 or T is 1.		
We use "dot" to designate logical "and" and "+" to designate logical or in switching algebra. So how can we express this as a Boolean Expression?			
Boolean Expression: $H = (A \cdot B \cdot C)$) + T		
Note that there is an order of operation, performed before OR. Thus the parenth			

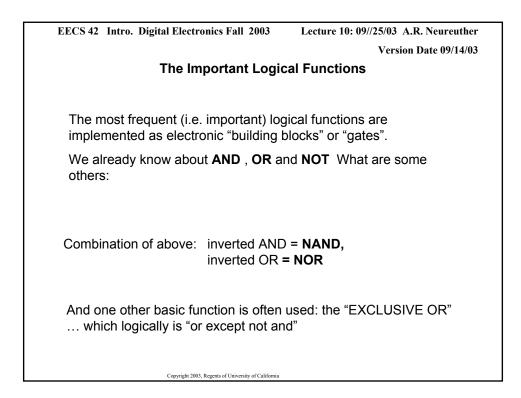
Copyright 2003, Regents of University of California

EECS 42 Intro. Digital Electronics Fall 2003 Lecture 10: 09//25/03 A.R. Neureuther Version Date 09/14/03 Logical Expressions Standard logic notation : Examples: $X = A \cdot B$; $Y = A \cdot B \cdot C$ AND: "dot" OR : "+ sign" Examples: W = A+B ; Z = A+B+C "bar over symbol for complement" Example: $Z = \overline{A}$ NOT: With these basic operations we can construct any logical expression. Order of operation: NOT, AND, OR (note that negation of an expression is performed after the expression is evaluated, so there is an implied parenthesis, e.g. $\overline{A \bullet B}$ means $\overline{(A \bullet B)}$. Copyright 2003, Regents of University of California

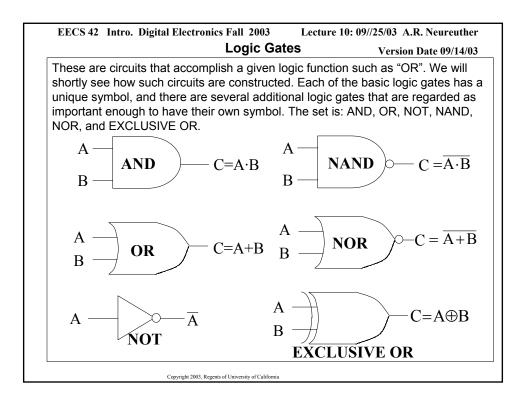
ECS 42 Intro. Digital Electronics Fall 203
Lecture 10: 09/25/03 A.R. Neureuther Carsion Date 09/14/03

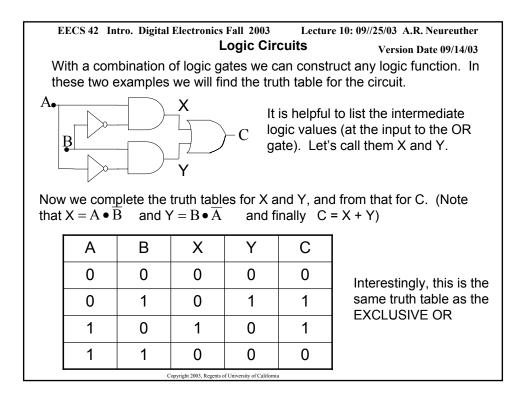
Logic Function Example

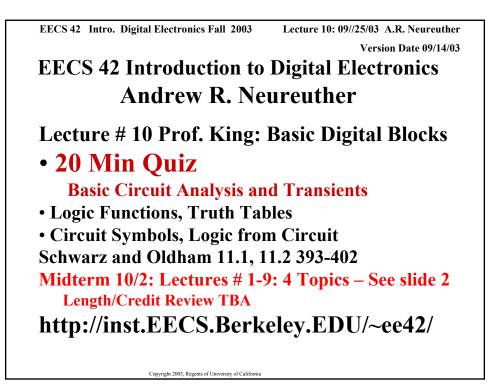
• Boolean Expression: $H = (A \cdot B \cdot C) + T$ This can be read H=1 if (A and B and C are 1) or T is 1, or

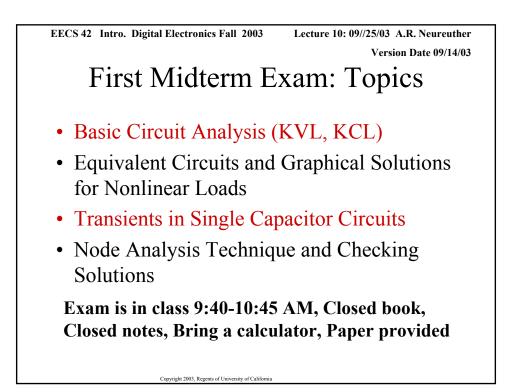

H is true if all of A,B,and C are true, or T is true, or

The voltage at node H will be high if the input voltages at nodes A, B and C are high or the input voltage at node T is high


EECS 42 Intro. Digital Electronics Fall 2003 Lecture 10: 09//25/03 A.R. Neureuther Version Date 09/14/03 **Logic Function Example 2** You wish to express under which conditions your burglar alarm goes off (B=1): If the "Alarm Test" button is pressed (A=1) OR if the Alarm is Set (S=1) AND { the door is opened (D=1) OR the trunk is opened (T=1)} Boolean Expression: B = A + S(D + T)This can be read B=1 if A = 1 or S=1 AND (D OR T =1), i.e. B=1 if $\{A = 1\}$ or $\{S=1 \text{ AND } (D \text{ OR } T = 1)\}$ or B is true IF {A is true} OR {S is true AND D OR T is true} or The voltage at node H will be high if {the input voltage at node A is high} OR {the input voltage at S is high and the voltages at D and T are high} Copyright 2003, Regents of University of California


EECS 42 Intro. Digital E	lectronics Fall 200	3 Lectu		/03 A.R. Neureuther Version Date 09/14/03
Evaluation of	Logical Expre	essions wi	ith "Truth	Tables"
Truth Tat	ole for Logic Ex	kpression	H = (A ·	B · C) + T
Α	В	С	Т	Н
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	0	0
1	1	0	0	0
1	1	1	0	1
0	0	0	1	1
0	0	1	1	1
0	1	0	1	1
0	1	1	1	1
1	0	0	1	1
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1
Сору	right 2003, Regents of University of Ca	lifornia		


EECS 42 Intro. Digital Electronics Fall 2003	Lecture 10: 09//25/03 A.R. Neureuther	
	Version Date 09/14/03	
Evaluation of Logical Express	sions with "Truth Tables"	
The Truth Table completely de	escribes a logic expression	
In fact, we will use the Truth Table	e as the fundamental	
meaning of a logic expression.		
Two logic expressions are equal if their truth tables are the same		
Copyright 2003, Regents of University of Californi	ia	



EECS 42 Intro. Digital Electronics Fall 2003 Lecture 10: 09//25/03 A.R. Neureuther		
	Version Date 09/14/03	
Some Important	Logical Functions	
• "AND"	$A \cdot B$ (or $A \cdot B \cdot C$)	
•. "OR"	A+B (or $A+B+C+D$)	
• "INVERT" or "NOT"	not A (or \overline{A})	
• "not AND" = NAND	\overline{AB} (only 0 when A and B=1)	
• "not OR" = NOR		
• exclusive OR = XOR	$A \oplus B$ (only 1 when A, B differ)	
Copyright 2003, Regents of University of California		

EECS 42 Intro. Digital Electronics Fall 2003	Lecture 10: 09//25/03 A.R. Neureuther		
Logic Funct	ions Version Date 09/14/03		
Logic Expression: To create logic values we will define "True",as Boolean 1 and "False",as Boolean 0.			
Moreover we can associate a logic variable with a circuit node. Typically we associate logic 1 with a high voltage (e.g. 2V) and and logic 0 with a low voltage (e.g. 0V).			
Example: The logic variable H is true (H=1) if (A and B and C are 1) or T is true (logic 1), where all of A,B,C and T are also logical variables.			
Logic Statement: H = 1 if A and B	3 and C are 1 or T is 1.		
We use "dot" to designate logical "and" and "+" to designate logical or in switching algebra. So how can we express this as a Boolean Expression?			
Boolean Expression: $H = (A \cdot B \cdot C)$) + T		
Note that there is an order of operation, performed before OR. Thus the parenth			

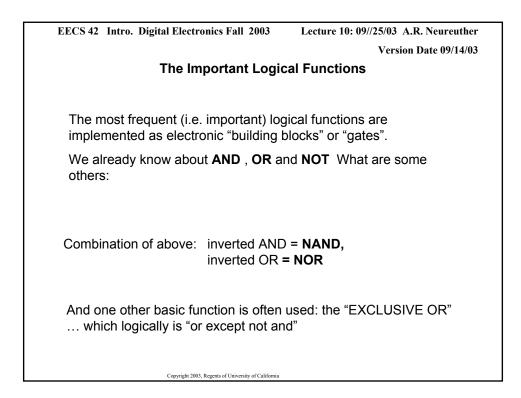
Copyright 2003, Regents of University of California

EECS 42 Intro. Digital Electronics Fall 2003 Lecture 10: 09//25/03 A.R. Neureuther Version Date 09/14/03 Logical Expressions Standard logic notation : Examples: $X = A \cdot B$; $Y = A \cdot B \cdot C$ AND: "dot" OR : "+ sign" Examples: W = A+B ; Z = A+B+C "bar over symbol for complement" Example: $Z = \overline{A}$ NOT: With these basic operations we can construct any logical expression. Order of operation: NOT, AND, OR (note that negation of an expression is performed after the expression is evaluated, so there is an implied parenthesis, e.g. $\overline{A \bullet B}$ means $\overline{(A \bullet B)}$. Copyright 2003, Regents of University of California

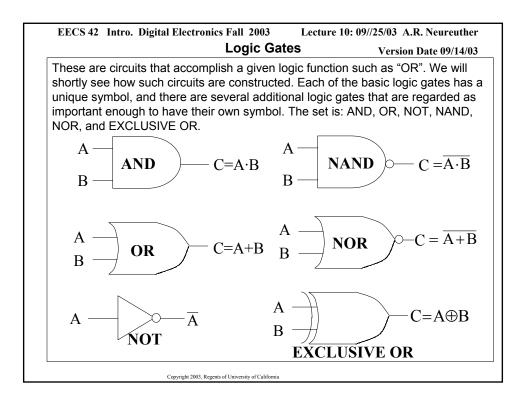
ECS 42 Intro. Digital Electronics Fall 203
Lecture 10: 09/25/03 A.R. Neureuther Carsion Date 09/14/03

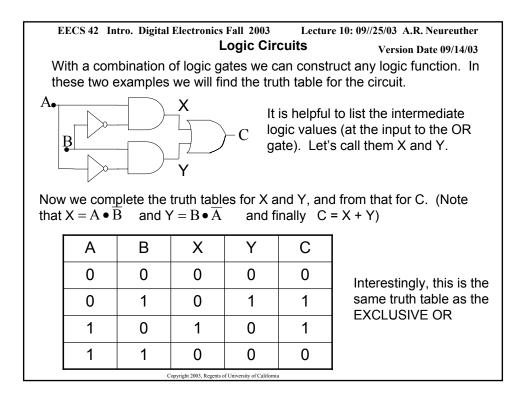
Logic Function Example

• Boolean Expression: $H = (A \cdot B \cdot C) + T$ This can be read H=1 if (A and B and C are 1) or T is 1, or


H is true if all of A,B,and C are true, or T is true, or

The voltage at node H will be high if the input voltages at nodes A, B and C are high or the input voltage at node T is high


EECS 42 Intro. Digital Electronics Fall 2003 Lecture 10: 09//25/03 A.R. Neureuther Version Date 09/14/03 **Logic Function Example 2** You wish to express under which conditions your burglar alarm goes off (B=1): If the "Alarm Test" button is pressed (A=1) OR if the Alarm is Set (S=1) AND { the door is opened (D=1) OR the trunk is opened (T=1)} Boolean Expression: B = A + S(D + T)This can be read B=1 if A = 1 or S=1 AND (D OR T =1), i.e. B=1 if $\{A = 1\}$ or $\{S=1 \text{ AND } (D \text{ OR } T = 1)\}$ or B is true IF {A is true} OR {S is true AND D OR T is true} or The voltage at node H will be high if {the input voltage at node A is high} OR {the input voltage at S is high and the voltages at D and T are high} Copyright 2003, Regents of University of California


EECS 42 Intro. Digital E	lectronics Fall 200	3 Lectu		/03 A.R. Neureuther Version Date 09/14/03
Evaluation of	Logical Expre	essions wi	ith "Truth	Tables"
Truth Tat	ole for Logic Ex	kpression	H = (A ·	B · C) + T
Α	В	С	Т	Н
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	0	0
1	1	0	0	0
1	1	1	0	1
0	0	0	1	1
0	0	1	1	1
0	1	0	1	1
0	1	1	1	1
1	0	0	1	1
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1
Сору	right 2003, Regents of University of Ca	lifornia		

EECS 42 Intro. Digital Electronics Fall 2003	Lecture 10: 09//25/03 A.R. Neureuther	
	Version Date 09/14/03	
Evaluation of Logical Express	sions with "Truth Tables"	
The Truth Table completely de	escribes a logic expression	
In fact, we will use the Truth Table	e as the fundamental	
meaning of a logic expression.		
Two logic expressions are equal if their truth tables are the same		
Copyright 2003, Regents of University of Californi	ia	

EECS 42 Intro. Digital Electronics Fall 2003 Lecture 10: 09//25/03 A.R. Neureuther		
	Version Date 09/14/03	
Some Important	Logical Functions	
• "AND"	$A \cdot B$ (or $A \cdot B \cdot C$)	
•. "OR"	A+B (or $A+B+C+D$)	
• "INVERT" or "NOT"	not A (or \overline{A})	
• "not AND" = NAND	\overline{AB} (only 0 when A and B=1)	
• "not OR" = NOR		
• exclusive OR = XOR	$A \oplus B$ (only 1 when A, B differ)	
Copyright 2003, Regents of University of California		

