EECS 42 Intro. Digital Electronics Fall 2003
 Lecture 10: 09//25/03 A.R. Neureuther
 Version Date 09/14/0

EECS 42 Introduction to Digital Electronics Andrew R. Neureuther

Lecture \# 10 Prof. King: Basic Digital Blocks

- 20 Min Quiz

Basic Circuit Analysis and Transients

- Logic Functions, Truth Tables
- Circuit Symbols, Logic from Circuit

Schwarz and Oldham 11.1, 11.2 393-402
Midterm 10/2: Lectures \# 1-9: 4 Topics - See slide 2 Length/Credit Review TBA
http://inst.EECS.Berkeley.EDU/~ee42/

EECS 42 Intro. Digital Electronics Fall 2003 Lecture 10: 09//25/03 A.R. Neureuther

Logical Expressions

Standard logic notation :
AND: "dot" Examples: $\mathrm{X}=\mathrm{A} \cdot \mathrm{B} ; \mathrm{Y}=\mathrm{A} \cdot \mathrm{B} \cdot \mathrm{C}$
OR : "+ sign" Examples: $\mathrm{W}=\mathrm{A}+\mathrm{B} ; \mathrm{Z}=\mathrm{A}+\mathrm{B}+\mathrm{C}$
NOT: "bar over symbol for complement" Example: $\mathrm{Z}=\overline{\mathrm{A}}$
With these basic operations we can construct any logical
expression.
Order of operation: NOT, AND, OR (note that negation of an
expression is performed after the expression is evaluated, so
there is an implied parenthesis, e.g. $\overline{\mathrm{A} \bullet \mathrm{B}}$ means $\overline{(A \bullet B)}$.
EECS 42 Intro. Digital Electronics Fall 2003 Lecture 10: 09/25/03 A.R. Neureuther
Version Date 09/14/03
Logic Function Example

- Boolean Expression: $H=(A \cdot B \cdot C)+T$

This can be read $H=1$ if (A and B and C are 1) or T is 1 , or
H is true if all of A, B, and C are true, or T is true, or
The voltage at node H will be high if the input voltages at nodes A, B and C are high or the input voltage at node T is high

We use "dot" to designate logical "and" and " + " to designate logical or in switching algebra. So how can we express this as a Boolean Expression?
Boolean Expression: $\quad H=(A \cdot B \cdot C)+T$
Note that there is an order of operation, just as in math, and AND is performed before OR. Thus the parenthesis are not actually required here.

```
EECS 42 Intro. Digital Electronics Fall 2003 Lecture 10: 09//25/03 A.R. Neureuther
    Logic Function Example 2
You wish to express under which conditions your burglar alarm goes off (B=1):
    If the "Alarm Test" button is pressed (A=1)
    OR if the Alarm is Set (S=1) AND { the door is opened (D=1) OR the
                                    trunk is opened (T=1)}
    Boolean Expression: }\quadB=A+S(D+T
This can be read B=1 if A=1 or S=1 AND (D OR T=1), i.e
                B=1 if {A=1} or {S=1 AND (D OR T=1)}
or
B is true IF {A is true} OR {S is true AND D OR T is true}
or
The voltage at node H will be high if {the input voltage at node A is high} OR
{the input voltage at S is high and the voltages at D and T are high}
```


Evaluation of Logical Expressions with "Truth Tables"
The Truth Table completely describes a logic expression

In fact, we will use the Truth Table as the fundamental meaning of a logic expression.
Two logic expressions are equal if their truth tables are the same

EECS 42 Intro. Digital Electronics Fall 2003 Lecture 10: 09//25/03 A.R. Neureuther ersion Date 09/14/03
 Some Important Logical Functions

- "AND"	A•B	(or A•B.C)
- "OR"	$A+B$	(or $\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D} \ldots$)
- "INVERT" or "NOT"	not A	(or $\overline{\mathrm{A}}$)
- ${ }^{\text {not }}$ AND" = NAND	$\overline{\mathrm{AB}}$	(only 0 when A and $B=1$)
- "not OR" = NOR	$\overline{\mathrm{A}+\mathrm{B}}$	(only 1 when $\mathrm{A}=\mathrm{B}=0$)
- exclusive $\mathrm{OR}=\mathrm{XOR}$	$\mathrm{A} \oplus \mathrm{~B}$	(only 1 when A, B differ) i.e., $A+B$ except $A \cdot B$

EECS 42 Intro. Digital Electronics Fall 2003Lecture 10: 09//25/03 A.R. Neureuther Version Date 09/14/03
Evaluation of Logical Expressions with "Truth Tables"
The Truth Table completely describes a logic expression
In fact, we will use the Truth Table as the fundamental meaning of a logic expression. Two logic expressions are equal if their truth tables are the same

EECS 42 Intro. Digital Electronics Fall 2003 Lecture 10: 09//25/03 A.R. Neureuther
Logic Gates \quad Version Date 09/14/03
里

These are circuits that accomplish a given logic function such as "OR". We will shortly see how such circuits are constructed. Each of the basic logic gates has a unique symbol, and there are several additional logic gates that are regarded as mportant enough to have their own symbol. The set is: AND, OR, NOT, NAND NOR, and EXCLUSIVE OR

A	B	X	Y	C
0	0	0	0	0
0	1	0	1	1
1	0	1	0	1
1	1	0	0	0

Interestingly, this is the same truth table as the EXCLUSIVE OR

And one other basic function is often used: the "EXCLUSIVE OR" ... which logically is "or except not and"

Now we complete the truth tables for X and Y, and from that for C. (Note that $X \quad$ and Y and finally $C=X+Y$) implemented as electronic "building blocks" or "gates".

We already know about AND, OR and NOT What are some others:

Combination of above: inverted AND = NAND, inverted OR = NOR

EECS 42 Intro. Digital Electronics Fall 2003
 Lecture 10: 09//25/03 A.R. Neureuther
 Version Date 09/14/0

EECS 42 Introduction to Digital Electronics Andrew R. Neureuther

Lecture \# 10 Prof. King: Basic Digital Blocks

- 20 Min Quiz

Basic Circuit Analysis and Transients

- Logic Functions, Truth Tables
- Circuit Symbols, Logic from Circuit

Schwarz and Oldham 11.1, 11.2 393-402
Midterm 10/2: Lectures \# 1-9: 4 Topics - See slide 2 Length/Credit Review TBA
http://inst.EECS.Berkeley.EDU/~ee42/

EECS 42 Intro. Digital Electronics Fall 2003 Lecture 10: 09//25/03 A.R. Neureuther

Logical Expressions

Standard logic notation :
AND: "dot" Examples: $\mathrm{X}=\mathrm{A} \cdot \mathrm{B} ; \mathrm{Y}=\mathrm{A} \cdot \mathrm{B} \cdot \mathrm{C}$
OR : "+ sign" Examples: $\mathrm{W}=\mathrm{A}+\mathrm{B} ; \mathrm{Z}=\mathrm{A}+\mathrm{B}+\mathrm{C}$
NOT: "bar over symbol for complement" Example: $\mathrm{Z}=\overline{\mathrm{A}}$
With these basic operations we can construct any logical
expression.
Order of operation: NOT, AND, OR (note that negation of an
expression is performed after the expression is evaluated, so
there is an implied parenthesis, e.g. $\overline{\mathrm{A} \bullet \mathrm{B}}$ means $\overline{(A \bullet B)}$.
EECS 42 Intro. Digital Electronics Fall 2003 Lecture 10: 09/25/03 A.R. Neureuther
Version Date 09/14/03
Logic Function Example

- Boolean Expression: $H=(A \cdot B \cdot C)+T$

This can be read $H=1$ if (A and B and C are 1) or T is 1 , or
H is true if all of A, B, and C are true, or T is true, or
The voltage at node H will be high if the input voltages at nodes A, B and C are high or the input voltage at node T is high

We use "dot" to designate logical "and" and " + " to designate logical or in switching algebra. So how can we express this as a Boolean Expression?
Boolean Expression: $\quad H=(A \cdot B \cdot C)+T$
Note that there is an order of operation, just as in math, and AND is performed before OR. Thus the parenthesis are not actually required here.

```
EECS 42 Intro. Digital Electronics Fall 2003 Lecture 10: 09//25/03 A.R. Neureuther
    Logic Function Example 2
You wish to express under which conditions your burglar alarm goes off (B=1):
    If the "Alarm Test" button is pressed (A=1)
    OR if the Alarm is Set (S=1) AND { the door is opened (D=1) OR the
                                    trunk is opened (T=1)}
    Boolean Expression: }\quadB=A+S(D+T
This can be read B=1 if A=1 or S=1 AND (D OR T=1), i.e
                B=1 if {A=1} or {S=1 AND (D OR T=1)}
or
B is true IF {A is true} OR {S is true AND D OR T is true}
or
The voltage at node H will be high if {the input voltage at node A is high} OR
{the input voltage at S is high and the voltages at D and T are high}
```


Evaluation of Logical Expressions with "Truth Tables"
The Truth Table completely describes a logic expression

In fact, we will use the Truth Table as the fundamental meaning of a logic expression.
Two logic expressions are equal if their truth tables are the same

EECS 42 Intro. Digital Electronics Fall 2003 Lecture 10: 09//25/03 A.R. Neureuther ersion Date 09/14/03
 Some Important Logical Functions

- "AND"	A•B	(or A•B.C)
- "OR"	$A+B$	(or $\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D} \ldots$)
- "INVERT" or "NOT"	not A	(or $\overline{\mathrm{A}}$)
- ${ }^{\text {not }}$ AND" = NAND	$\overline{\mathrm{AB}}$	(only 0 when A and $B=1$)
- "not OR" = NOR	$\overline{\mathrm{A}+\mathrm{B}}$	(only 1 when $\mathrm{A}=\mathrm{B}=0$)
- exclusive $\mathrm{OR}=\mathrm{XOR}$	$\mathrm{A} \oplus \mathrm{~B}$	(only 1 when A, B differ) i.e., $A+B$ except $A \cdot B$

EECS 42 Intro. Digital Electronics Fall 2003Lecture 10: 09//25/03 A.R. Neureuther Version Date 09/14/03
Evaluation of Logical Expressions with "Truth Tables"
The Truth Table completely describes a logic expression
In fact, we will use the Truth Table as the fundamental meaning of a logic expression. Two logic expressions are equal if their truth tables are the same

EECS 42 Intro. Digital Electronics Fall 2003 Lecture 10: 09//25/03 A.R. Neureuther
Logic Gates \quad Version Date 09/14/03
里

These are circuits that accomplish a given logic function such as "OR". We will shortly see how such circuits are constructed. Each of the basic logic gates has a unique symbol, and there are several additional logic gates that are regarded as mportant enough to have their own symbol. The set is: AND, OR, NOT, NAND NOR, and EXCLUSIVE OR

A	B	X	Y	C
0	0	0	0	0
0	1	0	1	1
1	0	1	0	1
1	1	0	0	0

Interestingly, this is the same truth table as the EXCLUSIVE OR

And one other basic function is often used: the "EXCLUSIVE OR" ... which logically is "or except not and"

Now we complete the truth tables for X and Y, and from that for C. (Note that $X \quad$ and Y and finally $C=X+Y$) implemented as electronic "building blocks" or "gates".

We already know about AND, OR and NOT What are some others:

Combination of above: inverted AND = NAND, inverted OR = NOR

