EECS 42 Intro. Digital Electronics Fall 2003 Lecture 10: 09//25/03 A.R. Neureuth
Version Date 09/14/
EECS 42 Introduction to Digital Electronics
Andrew R. Neureuther
Lecture # 10 Prof. King: Basic Digital Blocks
• 20 Min Quiz
Basic Circuit Analysis and Transients
Logic Functions, Truth Tables
Circuit Symbols, Logic from Circuit
Schwarz and Oldham 11.1, 11.2 393-402
Midterm 10/2: Lectures # 1-9: 4 Topics – See slide 2 Length/Credit Review TBA
http://inst.EECS.Berkeley.EDU/~ee42/

EECS 42 Intro. Digital Electronics Fall 2003	Lecture 10: 09//25/03 A.R. Neureuther
	Version Date 09/14/03
Logical Expre	ssions
Standard logic notation :	
AND: "dot" Examples: X = A ·	$B ; Y = A \cdot B \cdot C$
OR : "+ sign" Examples: W = A	+B ; Z = A+B+C
NOT: "bar over symbol for comple	ment" Example: $Z = \overline{A}$
With these basic operations we can expression.	construct any logical
Order of operation: NOT, AND, OR expression is performed after the ex there is an implied parenthesis, e.g.	pression is evaluated, so

EECS 42 Intro. Digital Electronics Fall 2003 Lecture 10: 09//25/03 A.R. Neureuther Version Date 09/14/03 First Midterm Exam: Topics

- Basic Circuit Analysis (KVL, KCL)
- Equivalent Circuits and Graphical Solutions for Nonlinear Loads
- Transients in Single Capacitor Circuits
- Node Analysis Technique and Checking Solutions

Exam is in class 9:40-10:45 AM, Closed book, Closed notes, Bring a calculator, Paper provided

EECS 42 Intro. Digital Electronics Fall 2003 Lecture 10: 09//25/03 A.R. Neureuther Version Date 09/14/03

Logic Function Example

• Boolean Expression: $H = (A \cdot B \cdot C) + T$

This can be read H=1 if (A and B and C are 1) or T is 1, or H is true if all of A,B,and C are true, or T is true, or The voltage at node H will be high if the input voltages at nodes A, B and C are high or the input voltage at node T is high

EECS 42 Intro. Digital Electronics Fall 2003	Lecture 10: 09//25/03 A.R. Neureuther			
Logic Func	Version Date 09/14/03			
Logic Expression : To create logic values we will define "True" , as Boolean 1 and "False" , as Boolean 0.				
Moreover we can associate a logic variable with a circuit node. Typically we associate logic 1 with a high voltage (e.g. 2V) and and logic 0 with a low voltage (e.g. 0V).				
Example: The logic variable H is true (H=1) if (A and B and C are 1) or T is true (logic 1), where all of A,B,C and T are also logical variables.				
Logic Statement: H = 1 if A and	B and C are 1 or T is 1.			
We use "dot" to designate logical "and" and "+" to designate logical or in switching algebra. So how can we express this as a Boolean Expression?				
Boolean Expression: $H = (A \cdot B \cdot G)$	C) + ⊤			
Note that there is an order of operation performed before OR. Thus the parentl				
Convright 2003. Reseases of University of California				

EECS 42 Intro. Digital Electronics Fall 2003	Lecture 10: 09//25/03 A.R. Neureuther				
	Version Date 09/14/03				
Logic Function Example 2					
You wish to express under which conditions your burglar alarm goes off (B=1):					
If the "Alarm Test" button is pressed (A=1)					
OR if the Alarm is Set (S=1) AND { the door is opened (D=1) OR the trunk is opened (T=1)}					
Boolean Expression: B = A + S(D +	Τ)				
This can be read B=1 if A = 1 or S=1 AN	D (D OR T =1), i.e.				
B=1 if {A = 1} or {S=1 AND (D OR T =1)}					
or					
B is true IF {A is true} OR {S is true AND D	OR T is true}				
or					
The voltage at node H will be high if {the in {the input voltage at S is high and the volta					
Copyright 2003, Regents of University of California					

EECS 42 Intro. Digital Electronics Fal	I 2003 Lecture 10: 09//25/03 A.R. Neureuther			
	Version Date 09/14/03			
Some Important Logical Functions				
• "AND"	$A \cdot B$ (or $A \cdot B \cdot C$)			
». "OR"	A+B (or $A+B+C+D$)			
• "INVERT" or "NOT"	not A (or \overline{A})			
• "not AND" = NAND	\overline{AB} (only 0 when A and B=1)			
• "not OR" = NOR	$\overline{A+B}$ (only 1 when $A=B=0$)			
• exclusive OR = XOR	$A \oplus B$ (only 1 when A, B differ) i.e., $A + B$ except $A \cdot B$			
Conversite 2003. Research of Unive	arvity of California			

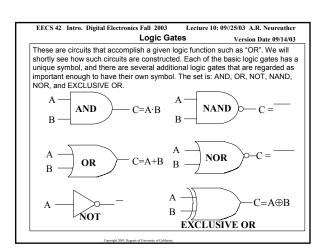
EECS 42 Intro. Digital Electro	onics Fall 20	03 Lectu	re 10: 09//25	03 A.R. Neureuther
				Version Date 09/14/03
Evaluation of Log	ical Expr	essions wi	ith "Truth	n Tables"
Truth Table for	or Logic E	xpression	H = (A ·	B · C) + T
А	В	С	Т	Н
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	0	0
1	1	0	0	0
1	1	1	0	1
0	0	0	1	1
0	0	1	1	i i
0	1	0	1	1
0	1	1	1	1
1	0	0	1	1
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1
Copyright 2003,	Regents of University of C	alifornia		

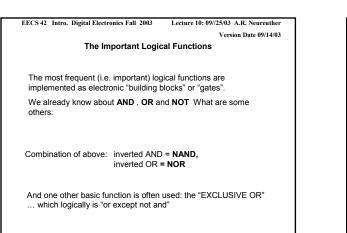
Evaluation of Logical Expressions with "Truth Tables"

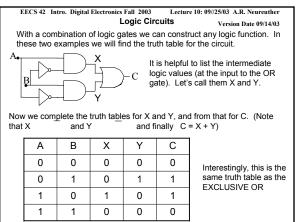
The Truth Table completely describes a logic expression

In fact, we will use the Truth Table as the fundamental

Two logic expressions are equal if their truth tables are the


Lecture 10: 09//25/03 A.R. Neureuther


Version Date 09/14/03


EECS 42 Intro. Digital Electronics Fall 2003

meaning of a logic expression.

same

EECS 42 Intro. Digital Electronics Fall 2003 Lecture 10: 09//25/03 A.R. Neureuth
Version Date 09/14/
EECS 42 Introduction to Digital Electronics
Andrew R. Neureuther
Lecture # 10 Prof. King: Basic Digital Blocks
• 20 Min Quiz
Basic Circuit Analysis and Transients
Logic Functions, Truth Tables
Circuit Symbols, Logic from Circuit
Schwarz and Oldham 11.1, 11.2 393-402
Midterm 10/2: Lectures # 1-9: 4 Topics – See slide 2 Length/Credit Review TBA
http://inst.EECS.Berkeley.EDU/~ee42/

EECS 42 Intro. Digital Electronics Fall 2003	Lecture 10: 09//25/03 A.R. Neureuther
	Version Date 09/14/03
Logical Expre	ssions
Standard logic notation :	
AND: "dot" Examples: X = A ·	$B ; Y = A \cdot B \cdot C$
OR : "+ sign" Examples: W = A	+B ; Z = A+B+C
NOT: "bar over symbol for comple	ment" Example: $Z = \overline{A}$
With these basic operations we can expression.	construct any logical
Order of operation: NOT, AND, OR expression is performed after the ex there is an implied parenthesis, e.g.	pression is evaluated, so

EECS 42 Intro. Digital Electronics Fall 2003 Lecture 10: 09//25/03 A.R. Neureuther Version Date 09/14/03 First Midterm Exam: Topics

- Basic Circuit Analysis (KVL, KCL)
- Equivalent Circuits and Graphical Solutions for Nonlinear Loads
- Transients in Single Capacitor Circuits
- Node Analysis Technique and Checking Solutions

Exam is in class 9:40-10:45 AM, Closed book, Closed notes, Bring a calculator, Paper provided

EECS 42 Intro. Digital Electronics Fall 2003 Lecture 10: 09//25/03 A.R. Neureuther Version Date 09/14/03

Logic Function Example

• Boolean Expression: $H = (A \cdot B \cdot C) + T$

This can be read H=1 if (A and B and C are 1) or T is 1, or H is true if all of A,B,and C are true, or T is true, or The voltage at node H will be high if the input voltages at nodes A, B and C are high or the input voltage at node T is high

EECS 42 Intro. Digital Electronics Fall 2003	Lecture 10: 09//25/03 A.R. Neureuther			
Logic Func	Version Date 09/14/03			
Logic Expression : To create logic values we will define "True" , as Boolean 1 and "False" , as Boolean 0.				
Moreover we can associate a logic variable with a circuit node. Typically we associate logic 1 with a high voltage (e.g. 2V) and and logic 0 with a low voltage (e.g. 0V).				
Example: The logic variable H is true (H=1) if (A and B and C are 1) or T is true (logic 1), where all of A,B,C and T are also logical variables.				
Logic Statement: H = 1 if A and	B and C are 1 or T is 1.			
We use "dot" to designate logical "and" and "+" to designate logical or in switching algebra. So how can we express this as a Boolean Expression?				
Boolean Expression: $H = (A \cdot B \cdot G)$	C) + ⊤			
Note that there is an order of operation performed before OR. Thus the parentl				
Convright 2003. Reseases of University of California				

EECS 42 Intro. Digital Electronics Fall 2003	Lecture 10: 09//25/03 A.R. Neureuther				
	Version Date 09/14/03				
Logic Function Example 2					
You wish to express under which conditions your burglar alarm goes off (B=1):					
If the "Alarm Test" button is pressed (A=1)					
OR if the Alarm is Set (S=1) AND { the door is opened (D=1) OR the trunk is opened (T=1)}					
Boolean Expression: B = A + S(D +	Τ)				
This can be read B=1 if A = 1 or S=1 AN	D (D OR T =1), i.e.				
B=1 if {A = 1} or {S=1 AND (D OR T =1)}					
or					
B is true IF {A is true} OR {S is true AND D	OR T is true}				
or					
The voltage at node H will be high if {the in {the input voltage at S is high and the volta					
Copyright 2003, Regents of University of California					

EECS 42 Intro. Digital Electronics Fal	I 2003 Lecture 10: 09//25/03 A.R. Neureuther			
	Version Date 09/14/03			
Some Important Logical Functions				
• "AND"	$A \cdot B$ (or $A \cdot B \cdot C$)			
». "OR"	A+B (or $A+B+C+D$)			
• "INVERT" or "NOT"	not A (or \overline{A})			
• "not AND" = NAND	\overline{AB} (only 0 when A and B=1)			
• "not OR" = NOR	$\overline{A+B}$ (only 1 when $A=B=0$)			
• exclusive OR = XOR	$A \oplus B$ (only 1 when A, B differ) i.e., $A + B$ except $A \cdot B$			
Conversite 2003. Research of Unive	arvity of California			

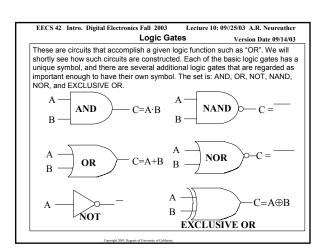
EECS 42 Intro. Digital Electro	onics Fall 20	03 Lectu	re 10: 09//25	03 A.R. Neureuther
				Version Date 09/14/03
Evaluation of Log	ical Expr	essions wi	ith "Truth	n Tables"
Truth Table for	or Logic E	xpression	H = (A ·	B · C) + T
А	В	С	Т	Н
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	0	0
1	1	0	0	0
1	1	1	0	1
0	0	0	1	1
0	0	1	1	i i
0	1	0	1	1
0	1	1	1	1
1	0	0	1	1
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1
Copyright 2003,	Regents of University of C	alifornia		

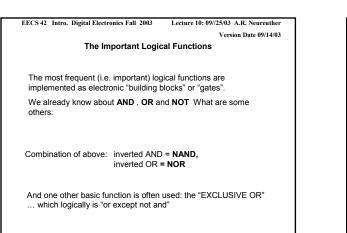
Evaluation of Logical Expressions with "Truth Tables"

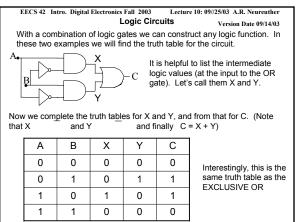
The Truth Table completely describes a logic expression

In fact, we will use the Truth Table as the fundamental

Two logic expressions are equal if their truth tables are the


Lecture 10: 09//25/03 A.R. Neureuther


Version Date 09/14/03


EECS 42 Intro. Digital Electronics Fall 2003

meaning of a logic expression.

same

