EECS 42 Intro. Digital Electronics Fall 2003 Lecture 14: 10/11/03 A.R. Neureuther Version Date 10/11/03 ## EECS 42 Introduction to Digital Electronics ## Andrew R. Neureuther Lecture # 14 Circuit analysis with dependent sources (4.1-4.3) - A) Node Equations - B) Equivalent Sources - C) Amplifier Parameters: Gain, R_{IN}, R_{OUT} D)Non-Ideal Op-Amp Model http://inst.EECS.Berkeley.EDU/~ee42/ Copyright 2003, Regents of University of California EECS 42 Intro. Digital Electronics Fall 2003 Lecture 14: 10/11/03 A.R. Neureuther Version Date 10/11/03 EXAMPLE OF NODAL ANALYSIS WITH DEPENDENT SOURCES Standard technique, except an additional equation is needed if the dependent variable is an unknown current as here. Note Vb is redundant. $$I = V_a / R_2 + (V_a - R_m I_2) / R_3$$ and $I_2 = V_a / R_2$ Solving: $I = V_a \left(1/R_2 + 1/R_3 - R_m \, / R_2 \, R_3 \, \right)$ So $$V_a = I R_2 R_3 / (R_2 + R_3 - R_m)$$ Copyright 2003, Regents of University of California EECS 42 Intro. Digital Electronics Fall 2003 Lecture 14: 10/11/03 A.R. Neureuther Version Date 10/11/03 ## THEVENIN EQUIVALENT WITH DEPENDENT SOURCES Method 1: Use V_{oc} and I_{sc} as usual to find V_{T} and R_{T} (and I_{N} as well) Method 2: To find R_T by the "ohmmeter method" turn off only the *independent* sources; let the dependent sources just do their thing. See examples in text (such as Example 4.3). This method also works when computing incremental signals such as a change in the source V_S (given by ΔV_S or ν_S) produces a change in V_{IN} or V_{OUT} , (given by ΔV_{IN} or ΔV_{OUT} also written ν_{IN} and ν_{OUT}), and their ratio called the small-signal gain $(\Delta V_{OUT}/\Delta V_S)$ or (ν_{OUT}/ν_S) Copyright 2003, Regents of University of Californ