EECS 42 Intro. Digital Electronics Fall 2003

Lecture 14: 10/11/03 A.R. Neureuther

Version Date 10/11/03

EECS 42 Introduction to Digital Electronics

Andrew R. Neureuther

Lecture # 14 Circuit analysis with dependent sources (4.1-4.3)

- A) Node Equations
- B) Equivalent Sources
- C) Amplifier Parameters:

Gain, R_{IN}, R_{OUT}

D)Non-Ideal Op-Amp Model

http://inst.EECS.Berkeley.EDU/~ee42/

Copyright 2003, Regents of University of California

EECS 42 Intro. Digital Electronics Fall 2003

Lecture 14: 10/11/03 A.R. Neureuther

Version Date 10/11/03

EXAMPLE OF NODAL ANALYSIS WITH DEPENDENT SOURCES

Standard technique, except an additional equation is needed if the dependent variable is an unknown current as here. Note Vb is redundant.

$$I = V_a / R_2 + (V_a - R_m I_2) / R_3$$
 and $I_2 = V_a / R_2$

Solving: $I = V_a \left(1/R_2 + 1/R_3 - R_m \, / R_2 \, R_3 \, \right)$

So
$$V_a = I R_2 R_3 / (R_2 + R_3 - R_m)$$

Copyright 2003, Regents of University of California

EECS 42 Intro. Digital Electronics Fall 2003

Lecture 14: 10/11/03 A.R. Neureuther

Version Date 10/11/03

THEVENIN EQUIVALENT WITH DEPENDENT SOURCES

Method 1: Use V_{oc} and I_{sc} as usual to find V_{T} and R_{T} (and I_{N} as well)

Method 2: To find R_T by the "ohmmeter method" turn off only the *independent* sources; let the dependent sources just do their thing.

See examples in text (such as Example 4.3).

This method also works when computing incremental signals such as a change in the source V_S (given by ΔV_S or ν_S) produces a change in V_{IN} or V_{OUT} , (given by ΔV_{IN} or ΔV_{OUT} also written ν_{IN} and ν_{OUT}), and their ratio called the small-signal gain $(\Delta V_{OUT}/\Delta V_S)$ or (ν_{OUT}/ν_S)

Copyright 2003, Regents of University of Californ

