Circuit analysis with dependent sources (4.1-4.3)

A) Node Equations

B) Equivalent Sources

C) Amplifier Parameters:
- Gain, R_{IN}, R_{OUT}
- Non-Ideal Op-Amp Model

The 4 Basic Linear Dependent Sources

- Voltage-controlled voltage source ... $V = A_v V_{cd}$
- Current-controlled voltage source ... $V = R_m I_2$
- Current-controlled current source ... $I = A_1 I_2$
- Voltage-controlled current source ... $I = G_m V_{cd}$

EXAMPLE OF NODAL ANALYSIS WITH DEPENDENT SOURCES

Standard technique, except an additional equation is needed if the dependent variable is an unknown current as here. Note V_b is redundant.

$I = V_a / R_2 + (V_a - R_m I_2) / R_3$ and $I_2 = V_a / R_2$

Solving:

$V_a = I R_2 (R_3 - R_m)$

THEVENIN EQUIVALENT WITH DEPENDENT SOURCES

Method 1: Use V_{oc} and I_{sc} as usual to find V_T and R_T (and I_{ss} as well)

Method 2: To find R_T by the "ohmmeter method" turn off only the independent sources; let the dependent sources just do their thing.

See examples in text (such as Example 4.3).

This method also works when computing incremental signals such as a change in the source V_S (given by ΔV_S or v_S) produces a change in V_{IN} or V_{OUT}, (given by ΔV_{IN} or ΔV_{OUT}) also written v_{IN} and v_{OUT}), and their ratio called the small-signal gain ($\Delta V_{OUT} / \Delta V_S$) or ($v_{OUT} / v_S$)

EXAMPLE CIRCUIT WITH MULTIPLE SOURCES

Circuit with independent sources turned to zero

With method 2 we first find open circuit voltage (V_v) and then we "measure" input resistance with source I_{ss} turned off.

You verify the solution:

$V_{IN} = I_{ss} R_v (R_2 + R_3) / (R_2 + R_3 (1 - A))$

$R_m = R_v (R_2 + R_3) / (R_2 + R_3 (1 - A))$
EXAMPLE CIRCUIT: GAIN = \(\frac{\Delta V_{OUT}}{\Delta V_S} = \frac{V_{OUT}}{V_S} \)

\[R_{IN} = \frac{R_s R_b}{R_s + R_b} \]
\[V_{IN} = \frac{R_s}{R_s + R} V_s \]
\[V_{OUT} = -G_m V_{IN} R_{OUT} = -G_m \left(\frac{R_s + R_{IN} + R_L}{R_s + R_L} \right) V_s \]

Input voltage divider and output current divider reduce the gain.

EXAMPLE CIRCUIT: INPUT/OUTPUT RESISTANCE

\[R_{IN} = R_x \]
\[R_{OUT} = \frac{R_x}{R_x + R} \]

Can circuit design improve \(R_{IN} \) and \(R_{OUT} \) or do we need better devices?

EXAMPLE CIRCUIT: INCREASED INPUT RESISTANCE

Add resistor \(R_x \)

Analysis: apply \(i_{\text{TEST}} \) and evaluate \(v_{\text{TEST}} \)

\[V_{IN} = R_{IN} \text{TEST} + V_E \]

KCL \[\frac{v}{R_x} + \frac{v_{\text{TEST}}}{R_x} - G_m R_{IN} \text{TEST} = 0 \]

Check for special case for \(R_x \) infinite

Outline your circuit analysis strategy here.

Hint: 1) Find \(V_x \) in terms of \(V_{\text{TEST}} \), 2) plug into expression for \(V_x \) and then 3) solve for \(V_x \) which appears on both sides of the equation.

Answer:

\[V_x = V_{\text{TEST}} \left(\frac{A R_x + R_2}{A + R_1} \right) \]

\[V_x = V_{\text{TEST}} \frac{R_x + R_2}{R_1} \]

Intuitive Explanation: \(G_m \) boops current which has to also go through \(R_x \). This raises \(v_{\text{TEST}} \) and the output impedance \(v_{\text{TEST}}/i_{\text{TEST}} \)

EXAMPLE CIRCUIT: INCREASED OUTPUT RESISTANCE

Add resistor \(R_x \)

The input has been assumed to be shorted

Analysis: apply \(i_{\text{TEST}} \) and evaluate \(v_{\text{TEST}} \)

Unknowns: \(i_{\text{TEST}} \), \(v_{\text{TEST}} \), \(v_{\text{IN}} \), \(v_E \)

Need 3 equations to find the ratio of \(i_{\text{TEST}}/v_{\text{TEST}} \)

Intuitive Explanation: \(G_m \) boops current which has to also go through \(R_x \). This raises \(v_{\text{TEST}} \) and the output impedance \(v_{\text{TEST}}/i_{\text{TEST}} \)

Try a bag. It is even easier

Finish this in the homework.

NON-IDEAL OP-AMPS

JUST ANOTHER CASE OF ANALYSIS WITH DEPENDENT SOURCES

Example:

Circuit (assume \(R_{IN} = 0 \))

Analysis:

Outline your circuit analysis strategy here.

Answer:

\[V_x = V_{\text{TEST}} \left(\frac{A R_x + R_2}{A + R_1} \right) \]

\[V_x = V_{\text{TEST}} \frac{R_x + R_2}{R_1} \]

if \(A \to \infty \)}