EECS 42 Intro. Digital Electronics Fall 2003

Lecture 14: 10/16/03 A.R. Neureuther

Version Date 10/29//03

EECS 42 Introduction Digital Electronics Andrew R. Neureuther

Lecture # 15 Op-Amp Circuits and Comparators 4.3-4.4 (light on non-ideal)

- A) Cascade Op-Amps
- **B)** Integration/Differentiation Op-Amps
- C) I vs. V of Op-Amps Source Limits
- **D)** Comparator Circuits
- E) D to A Converters

http://inst.EECS.Berkeley.EDU/~ee42/

Copyright 2003, Regents of University of California

EECS 42 Intro. Digital Electronics Fall 2003

Lecture 14: 10/16/03 A.R. Neureuther

Version Date 10/29//03

NEGATIVE FEEDBACK

Familiar examples of negative feedback:

Thermostat controlling room temperature Driver controlling direction of automobile Photochromic lenses in eyeglasses Fundamentally pushes toward stability

Familiar examples of positive feedback:

Microphone "squawk" in room sound system

Mechanical bi-stability in light switches

Thermonuclear reaction in H-bomb

Fundamentally pushes toward instability or bi-stability

EECS 42 Intro. Digital Electronics Fall 2003

Lecture 14: 10/16/03 A.R. Neureuther

Version Date 10/29//03

CASCADE OP-AMP CIRCUITS

How do you get started on finding Vo?

Hint: Identify Stages

Hint: I_{IN} does not affect V_{O1}

See the further examples of op-amp circuits in the reader

Copyright 2003, Regents of University of California

EECS 42 Intro. Digital Electronics Fall 2003

Lecture 14: 10/16/03 A.R. Neureuther

CASCADE OP-AMP SOLUTION Version Date 10/29//03

FIRST STAGE IS "SUMMING JUNCTION" AMPLIFIER

Solution:

$$i_{IN} \cong 0 \text{ and } V_{(-)} \cong V_{+} = 0$$

$$+V_{01} = -V_{01} + \frac{V_{1}}{R_{1}} + \frac{V_{2}}{R_{2}} + \frac{V_{3}}{R_{3}} + \frac{V_{0}}{R_{F}} = 0$$

$$\Rightarrow V_{01} = -\frac{R_{F}}{R_{1}} V_{1} - \frac{R_{F}}{R_{2}} V_{2} - \frac{R_{F}}{R_{3}} V_{3}$$

SECOND STAGE IS "INVERTING" AMPLIFIER

$$V_{1N2} = \frac{I_{1N}}{IK}$$

$$V_{02} = \frac{R_2}{R_1} V_{1N2}$$

Version Date 10/29//03

INTEGRATING OP-AMP

How do you get started on finding V_0 ?

Hint: $i_{IN} \cong 0$ and $V_{(-)} \cong V_{+} = 0$

Hint: KCL at V_{\perp} node with $I_{IN-} = 0$

Copyright 2003, Regents of University of California

EECS 42 Intro. Digital Electronics Fall 2003

Lecture 14: 10/16/03 A.R. Neureuther

Version Date 10/29//03

INTEGRATING OP-AMP

$$\frac{0 - V_{IN}}{R_1} + C \frac{\partial (0 - V_O)}{\partial t} = 0$$

Integrate from t_0 to t to get $V_O(t)$

$$V_O(t) = \frac{-1}{R_1 C} \int_{t_0}^{t} V_{IN}(t) dt'$$

Version Date 10/29//03

OP-AMP I-V CHARACTERISTICS WITH RAILS

· Circuit model (ideal op-amp) gives the essential linear part

- But V₀ cannot rise above some physical voltage related to the positive power supply V_{CC} ("upper rail")
- And V_0 cannot go below most negative power supply, V_{EE} i.e., limited by lower "rail" $V_0 > V_{-\text{RAIL}}$

Example: Amplifier with gain of 10^5 , with max V_0 of 3V and min V_0 of -3V.

EECS 42 Intro. Digital Electronics Fall 2003

Lecture 14: 10/16/03 A.R. Neureuther

Version Date 10/29//03

SIMPLE A/D CONVERTER

I-V with equal X and Y axes

Note:

- (a) displays linear amplifier behavior ($|V_{IN}| < 30 \ \mu V$) and stops at rails
- (b) shows comparator decision function (1 bit A/D converter centered at V_{IN} = 0) where lower rail = logic "0" and upper rail = logic "1"

Copyright 2003, Regents of University of California

EECS 42 Intro. Digital Electronics Fall 2003

Lecture 14: 10/16/03 A.R. Neureuther

Version Date 10/29//03

OP-AMP USE AS COMPARATOR (A/D) MODE

Simple comparator with threshold at 1V. Design lower rail at 0V and upper rail at 2V (logic "1"). A = large (e.g. 10² to 10⁵)

NOTE: The actual diagram of a comparator would not show an amplifier with "offset" power supply as above. It would be a simple triangle, perhaps with the threshold level (here 1V) specified.

voltage to V- and setting V+ to the

threshold voltage.

