EECS 42 Intro. Digital Electronics, Fall 2003 Lecture 17: 10/23/03 A.R. Neureuther Version Date 10/18/03 # EECS 42 Introduction Digital Electronics Andrew R. Neureuther These viewgraphs will be handed out in class. Lecture # 17 Logic with Complementary Devices S&O pp. 607-611 (read for graphs and not physics or equations), plus Handout of Wed Lectures. - A) Discovering a Pull-Up Device - B) Designing a Pull-Up Device - C) EE 42 Pull-Up Device Model (42S_PMOS) - D) Composite I_{OUT} vs. V_{OUT} - E) Voltage Transfer Function and V_{MID} http://inst.EECS.Berkeley.EDU/~ee42/ Copyright 2003, Regents of University of California EECS 42 Intro. Digital Electronics, Fall 2003 Lecture 17: 10/23/03 A.R. Neureuther Version Date 10/18/03 ## Problems and Opportunities in Logic Circuit Design Problem #1: Significant wasted current and power when V_{OUT} is low. Problem #2: High value of V_{OUT} is adversely affected by a load resistor. Missed Opportunity: The value of the input control signal is not used to adjust the state of the pull-up device. What if: If the pull-up device could be a state-dependent device what kind of device would we want? Copyright 2003, Regents of University of California The dependence on V_{OUT} is reversed in sign and shifted by V_{DD} Copyright 2003, Regents of University of California (and also shifted). Pull-Up Can be viewed as Complementary by using Device rather than Circuit voltages V_{DD}-V_X V'_{IN}=V_{DD}-V_{IN} V'_{IN}=V_{DD}-V_{IN} V'_{IN}=V_{DD}-V_{IN} Pull-Up V'_{OUT}=V_{DD}-V_{OUT} V'_{IN}=V_{DD}-V_{IN} V'_{IN}=V_{DD}-V_{IN} Copyright 2003. Regents of University of California EECS 42 Intro. Digital Electronics, Fall 2003 Lecture 17: 10/23/03 A.R. Neureuther Version Date 10/18/03 #### **Saturation Current NMOS Model** Current I_{OUT} only flows when V_{IN} is larger than the threshold value V_{TD} and the current is proportional to V_{OUT} up to $V_{OUT\text{-}SAT\text{-}D}$ where it reaches the saturation current $$I_{OUT-SAT-D} = k_D (V_{IN} - V_{TD}) V_{OUT-SAT-D}$$ Note that we have added an extra parameter to distinguish between threshold (V_{TD}) and saturation ($V_{OUT\text{-}SAT\text{-}D}$). EECS 42 Intro. Digital Electronics, Fall 2003 Lecture 17: 10/23/03 A.R. Neureuther Version Date 10/18/03 ### **Saturation Current 42S PMOS Model** Current I_{OUT} only flows when V_{IN} is smaller than V_{DD} by the threshold value V_{TU} (that is V_{DD} - V_{IN} > V_{TU}) and the current is proportional to the excess gate voltage $(V_{DD}$ - V_{IN} - V_{TU}) and is also proportional to $(V_{DD}$ - V_{OUT}) above $(V_{DD}$ - V_{OUT} -SAT-U) where it has its maximum saturated value. $$I_{OUT-SAT-U} = k_U (V_{DD} - V_{IN} - V_{TU}) V_{OUT-SAT-U}$$ EECS 42 Intro. Digital Electronics, Fall 2003 Lecture 17: 10/23/03 A.R. Neureuther Version Date 10/18/03 ## Method for Finding $\boldsymbol{V}_{\boldsymbol{M}}$ At V_M, 1) $$V_{OUT} = V_{IN} = V_{M}$$ 2) Both devices are in saturation $$\mathbf{3)} \quad \mathbf{I}_{\mathbf{OUT\text{-}SAT\text{-}D}} = \mathbf{I}_{\mathbf{OUT\text{-}SAT\text{-}U}}$$ $$I_{OUT-SAT-D} = k_D (V_{IN} - V_{TD}) V_{OUT-SAT-D}$$ $$= I_{OUT-SAT-U} = k_U (V_{DQ} - (V_{IN}) - V_{TU}) V_{OUT-SAT-U}$$ Substitute V_M Solve for $V_{\boldsymbol{M}}$ Example Result: When $k_D=k_P$, $V_{OUT\text{-}SAT\text{-}D}=V_{OUT\text{-}SAT\text{-}U}$ and $V_{TD}=V_{TU}$, then $V_M=V_{DD}/2$ Copyright 2003, Regents of University of Californi