EECS 42 Introduction Digital Electronics Andrew R. Neureuther

Quiz 10/30 and Midterm 10/6

Lecture \# 18 Logic Transients (Handout)
A) Review:Quiz 10/30 and Midterm 11/6
B) Transient as Capacitor Charging
C) Equivalent Resistance for MOS
D) Inverter Propagation Delay
E) Complementary MOS Operation
http://inst.EECS.Berkeley.EDU/~ee42/

EECS 42 Intro. Digital Electronics Fall 2003

Midterm \#2 Coverage

- Logic Functions and Timing Diagrams \leftrightarrows Quiz 10/30
- Analysis of vanilla circuits with dependent sources
- Ideal Op-Amps
- Analysis of circuits using dependent sources to improve characteristics
- Static analysis of logic gates
$I_{\text {OUT-SAT-n }}=k_{n}^{\prime}\left(\frac{W}{L}\right)_{n}\left(V_{\text {IN }}-V_{T_{n}}\right) V_{\text {OUT-SAT-n }}$

	$\mathrm{V}_{\mathrm{T}}(\mathrm{V})$	$\mathrm{V}_{\text {OUt-SAT }}(\mathrm{V})$	$\mathrm{k}^{\prime}\left(\mu \mathrm{A} / \mathrm{V}^{2}\right)$
NMOS	0.43	0.63	100
PMOS	0.4	1	25
Minimum sized devices have W/L $=2$			

$I_{\text {OUT-SAT-p }}=k_{p}^{\prime}\left(\frac{W}{L}\right)_{p}\left(V_{D D}-V_{I N}-\left|V_{T_{p}}\right|\right) V_{\text {OUT-SAT-p }}$

Logical Synthesis

Guided by DeMorgan's Theorem
DeMorgan's Theorem :

$$
\mathrm{A}+\mathrm{B}+\mathrm{C}=\overline{[\overline{\mathrm{A}} \overline{\mathrm{~B}} \overline{\mathrm{C}}]} \quad \text { or } \quad \overline{\mathrm{A}}+\overline{\mathrm{B}}+\overline{\mathrm{C}}=\overline{[\mathrm{A} \mathrm{~B} \mathrm{C}]}
$$

Example of Using DeMorgan's Theorem:

EFFECT OF GATE DELAY

Cascade of Logic Gates

How many "gate delays for shortest path? ANSWER : 2

How many gate delays for longest path? ANSWER : 3

TIMING DIAGRAMS Version Date 10/28/03

Show transitions of variables vs time
Glitching: temporary
switching to an

Note $\overline{\mathrm{B}}$ becomes valid one gate delay after B switches

Note that (\bar{B}. C) ${ }^{\text {becomes valid two }}$ gate delays after B\&C switch, because the invert function takes one delay and the NAND function a second.

EXAMPLE CIRCUIT: INCREASED INPUT RESISTANCE

Analysis: apply $\boldsymbol{i}_{\text {TEST }}$ and evaluate $\boldsymbol{v}_{\text {TEST }}$

$$
v_{I N}=R_{I N} i_{T E S T} \quad v_{T E S T}=R_{I N} i_{T E S T}+v_{E}
$$

$$
\mathbf{K C L} \quad \frac{v_{E}}{R_{E}}+\frac{v_{E}}{R_{0}}-i_{T E S T}-G_{m} R_{I N} i_{T E S T}=0
$$

Intuitive Explanation:
Check for special $\frac{v_{T E S T}}{i}=R_{I N}+\left(1+G_{m} R_{I N}\right) R_{E} \quad \begin{aligned} & \mathbf{R}_{\mathrm{E}} \text { puts } \mathbf{R}_{\text {IN }} \text { on a node }\end{aligned}$ case for $\mathbf{R}_{\mathbf{0}}$ infinite $\boldsymbol{i}_{T E S T}$ whose voltage increases in response to current in R_{IN}.

Copyright 2003, Regents of University of California

Method for Finding $\mathbf{V}_{\mathbf{M}}$

At V_{M},

1) $\mathbf{V}_{\text {OUT }}=V_{\text {IN }}=V_{M}$
2) Both devices are in saturation
3) $\mathbf{I}_{\text {OUt-SAT-D }}=I_{\text {OUt-SAT-U }}$

$$
\begin{gathered}
I_{\text {OUT-SAT-D }}=k_{D}\left(V_{I N}-V_{T D)}\right) V_{\text {OUT-SAT-D }} \\
=I_{O U T-S A T-U}=k_{U}\left(V_{D \mathrm{D}}-V_{I N}-V_{T U}\right) V_{\text {OUT-SAT-U }} \\
\\
\text { Substitute } \mathbf{V}_{\mathbf{M}} \\
\text { Solve for } \mathbf{V}_{\mathbf{M}}
\end{gathered}
$$

Example Result: When $\mathbf{k}_{\mathrm{D}}=\mathbf{k}_{\mathrm{P}}, \mathbf{V}_{\text {OUt-SAT-D }}=\mathbf{V}_{\text {OUt-SAT-U }}$ and $V_{T D}=V_{T U}$, then $V_{M}=V_{D D} / 2$

Voltage Transfer Function for the Complementary Logic Circuit

Transient Gate Problem: Discharging and

 Charging Capacitance on the Output

Output Propagation Delay High to Low

When $V_{\text {IN }}$ goes High $V_{\text {OUT }}$ starts decreases with time
Assume that the necessary voltage swing to cause the next downstream gate to begin to switch is $\mathbf{V}_{\mathrm{DD}} / \mathbf{2}$ or 2.5 V .

That is the propagation delay τ_{HL} for the output to go from high to low is the time to go from $V_{D D}=5 \mathrm{~V}$ to to $\mathrm{V}_{\mathrm{DD}} / 2=2.5 \mathrm{~V}$

Output Propagation Delay High to Low (Cont.)

When $V_{\text {OUT }}>V_{\text {OUt-SAT-D }}$ the available current is $I_{\text {OUT-SAT-D }}$
For this circuit when $V_{\text {OUT }}>V_{\text {OUt-Sat-d }}$ the available current is constant at $\mathrm{I}_{\text {OUt-SAT-D }}$ and the capacitor discharges.
The propagation delay is thus

$$
\Delta t=\frac{C_{\text {OUT }} \Delta V}{I_{\text {OUT-SAT-D }}}=\frac{C_{\text {OUT }} V_{D D}}{2 I_{\text {OUT-SAT-D }}}=\frac{50 \mathrm{fF} \cdot 2.5 \mathrm{~V}}{100 \mu \mathrm{~A}}=1.25 \mathrm{~ns}
$$

Switched Equivalent Resistance Model

The above model assumes the device is an ideal constant current source.

1) This is not true below $V_{\text {out-sat-d }}$ and leads to in accuracies.
2) Combining ideal current sources in networks with series and parallel connections is problematic.

Instead define an equivalent resistance for the device by setting $0.69 \mathrm{R}_{\mathrm{D}} \mathrm{C}$ equal to the Δt found above

This gives

$$
\Delta t=\frac{C_{O U T} V_{D D}}{2 I_{O U T-S A T-D}}=0.69 R_{D} C_{O U T}
$$

$$
R_{D}=\frac{V_{D D}}{2 \cdot(0.69) I_{O U T-S A T-D}} \approx \frac{3}{4} \frac{V_{D D}}{I_{O U T-S A T-D}}=\frac{3}{4} \frac{5 \mathrm{~V}}{100 \mu \mathrm{~A}}=37.5 \mathrm{k} \Omega
$$

Each device can now be replaced by this equivalent resistor.
$3 / 4 \mathbf{V}_{\mathrm{DD}}$ is the average value of $\mathbf{V}_{\text {OUT }}$
Approximate the NMOS device curve by a straight line
from ($\mathbf{0}, 0$) to ($\mathrm{I}_{\text {OUt-Sat-D }}, 3 / 4 \mathbf{V}_{\mathrm{DD}}$).
Interpret the straight line as a resistor with

$$
\text { slope }=1 / \mathbf{R}=3 / 4 \mathbf{V}_{\mathrm{DD}} / \mathbf{I}_{\mathrm{SAT}}
$$

Switched Equivalent Resistance Values

The resistor values depend on the properties of silicon, geometrical layout, design style and technology node.
n-type silicon has a carrier mobility that is $\mathbf{2}$ to $\mathbf{3}$ times higher than p-type.

The resistance is inversely proportion to the gate width/length in the geometrical layout.

Design styles may restrict all NMOS and PMOS to be of a predetermined fixed size.

The current per unit width of the gate increases nearly inversely with the linewidth.

For convenience in EE 42 we assume

$$
\begin{aligned}
& R_{D}=R_{U}=10 \mathrm{k} \Omega \text { for } V_{D D}=5 \mathrm{~V} \text { and } \\
& R_{D}=R_{U}=10 \mathrm{k} \Omega \text { for } V_{D D}=5 \mathrm{~V}
\end{aligned}
$$

Inverter Propagation Delay

Discharge (pull-down)

$$
\Delta t=0.69 R_{\mathrm{D}} \mathrm{C}_{\mathrm{OUT}}=0.69(10 \mathrm{k} \Omega)(50 \mathrm{fF})=345 \mathrm{ps}
$$

Discharge (pull-up)

$$
\Delta t=0.69 R_{\mathrm{U}} \mathrm{C}_{\text {OUT }}=0.69(10 \mathrm{k} \Omega)(50 \mathrm{fF})=345 \mathrm{ps}
$$

NMOS and PMOS use the
 CMOS Logic Gate

 same set of input signals

PMOS only in pull-up
PMOS conduct when input is low

PMOS do not conduct when
A + (BC)

NMOS only in pull-down NMOS conduct when input is high. NMOS conduct for $\mathrm{A}+(\mathrm{BC})$

Logic is Complementary and produces $F=\overline{\mathbf{A}+(\mathbf{B C})}$

CMOS Logic Gate: Example Inputs

$A=0$
$B=0$
$C=0$

PMOS all conduct

Output is High $=\mathbf{V}_{\mathrm{DD}}$

NMOS do not conduct

Logic is Complementary and produces $\mathrm{F}=1$

CMOS Logic Gate: Example Inputs

$$
\begin{aligned}
& A=\mathbf{0} \\
& B=\mathbf{1} \\
& \mathbf{C}=\mathbf{1}
\end{aligned}
$$

Copyright 2003, Regents of University of California

