EECS 42 Intro. Digital Electronics Fall 2003

Lecture 19: 10/30/03 A.R. Neureuther

Version Date 10/28/03

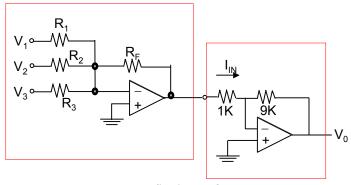
# EECS 42 Introduction Digital Electronics Andrew R. Neureuther

#### 2<sup>nd</sup> Midterm 11/6 See Coverage Sheet

## **Lecture # 19 Logic Transients**

Handout of Wed Lecture.

- A) Quiz
- **B) Worst Case CMOS Delay**
- C) Delay in CMOS Cascade http://inst.EECS.Berkeley.EDU/~ee42/

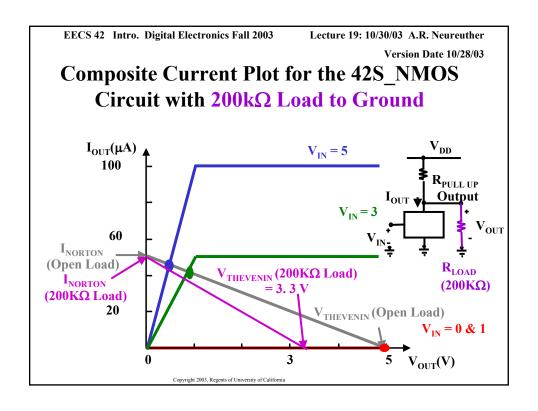

Copyright 2003, Regents of University of California

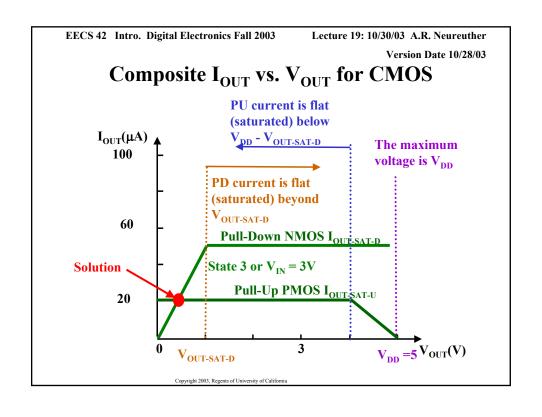
EECS 42 Intro. Digital Electronics Fall 2003

Lecture 19: 10/30/03 A.R. Neureuther

Version Date 10/28/03

#### CASCADE OP-AMP CIRCUITS



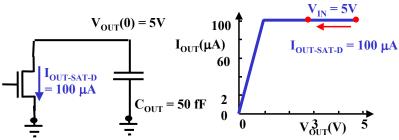


How do you get started on finding  $V_0$ ?

**Hint: Identify Stages** 

Hint: I<sub>IN</sub> does not affect V<sub>O1</sub>

See the further examples of op-amp circuits in the reader






EECS 42 Intro. Digital Electronics Fall 2003

Lecture 19: 10/30/03 A.R. Neureuther

Version Date 10/28/03

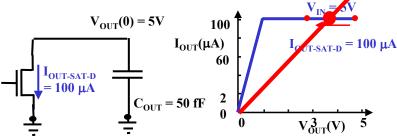
#### **Output Propagation Delay High to Low (Cont.)**



When  $V_{OUT} > V_{OUT-SAT-D}$  the available current is  $I_{OUT-SAT-D}$ 

For this circuit when  $V_{OUT} > V_{OUT\text{-}SAT\text{-}D}$  the available current is constant at  $I_{OUT\text{-}SAT\text{-}D}$  and the capacitor discharges.

The propagation delay is thus


$$\Delta t = \frac{C_{OUT}\Delta V}{I_{OUT-SAT-D}} = \frac{C_{OUT}V_{DD}}{2I_{OUT-SAT-D}} = \frac{50 \, fF \cdot 2.5V}{100 \, \mu A} = 1.25 \, ns$$

EECS 42 Intro. Digital Electronics Fall 2003

Lecture 19: 10/30/03 A.R. Neureuther

Version Date 10/28/03

# $R_D = \frac{3}{4} V_{DD} / I_{SAT}$ has a Physical Interpretation



 $^{3}\!\!/_{4}\,V_{DD}$  is the average value of  $\,V_{OUT}$ 

Approximate the NMOS device curve by a straight line from (0,0) to ( $I_{OUT\text{-}SAT\text{-}D}, {}^3\!\!/_4\,V_{DD}$  ).

Interpret the straight line as a resistor with

slope = 
$$1/R = \frac{3}{4} V_{DD}/I_{SAT}$$

# **Switched Equivalent Resistance Values**

The resistor values depend on the properties of silicon, geometrical layout, design style and technology node.

n-type silicon has a carrier mobility that is 2 to 3 times higher than p-type.

The resistance is inversely proportion to the gate width/length in the geometrical layout.

Design styles may restrict all NMOS and PMOS to be of a predetermined fixed size.

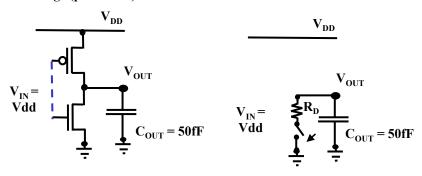
The current per unit width of the gate increases nearly inversely with the linewidth.

For convenience in EE 42 we assume

$$R_D = R_U = 10~\text{k}\Omega$$
 for  $V_{DD} = 5V$  and

$$R_D = R_U = 10 \text{ k}\Omega \text{ for } V_{DD} = 5V$$

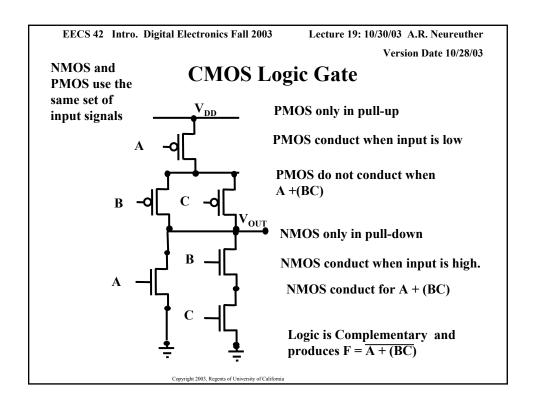
Copyright 2003, Regents of University of California

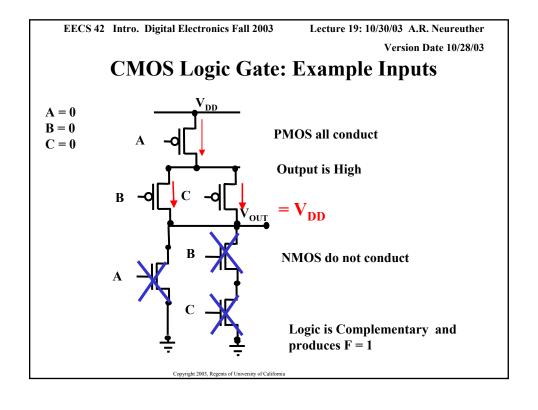

EECS 42 Intro. Digital Electronics Fall 2003

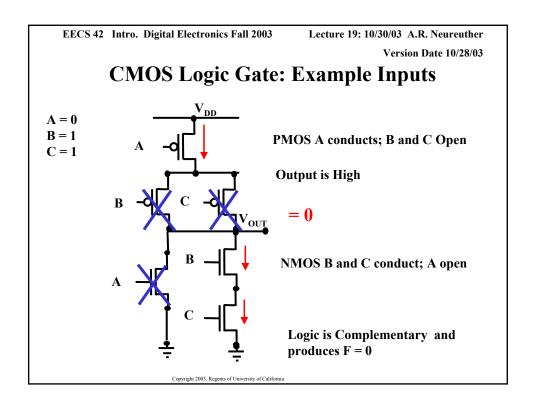
Lecture 19: 10/30/03 A.R. Neureuther

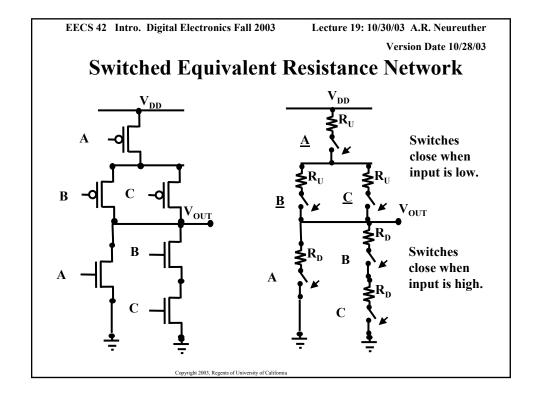
Version Date 10/28/03

# **Inverter Propagation Delay**


Discharge (pull-down)





$$\Delta t = 0.69 R_D C_{OUT} = 0.69 (10 k\Omega) (50 fF) = 345 ps$$


Discharge (pull-up)

$$\Delta t = 0.69 R_U C_{OUT} = 0.69 (10 k\Omega) (50 fF) = 345 ps$$









 $V_{DD}$ 

Version Date 10/28/03

### **Logic Gate Propagation Delay: Initial State**

The equivalent result up network for the new (present) inpute  $R_U$   $R_U$   $R_U$   $R_U$   $R_U$   $R_D$   $R_D$  R

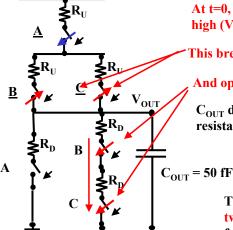
The initial state depends on the old (previous) inputs.

The equivalent resistance of the pull-down or pullup network for the transient phase depends on the new (present) input state.

Example: A=0, B=0, C=0 for a long time.

These inputs provided a path to  $V_{DD}$  for a long time and the capacitor has precharged up to  $V_{DD}$  = 5V.

Copyright 2003, Regents of University of California


EECS 42 Intro. Digital Electronics Fall 2003

 $\mathbf{V}_{ extbf{DD}}$ 

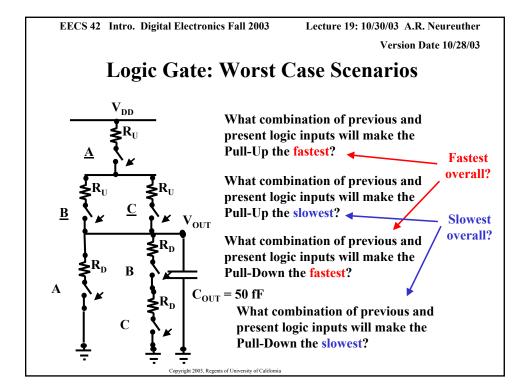
Lecture 19: 10/30/03 A.R. Neureuther

Version Date 10/28/03

# **Logic Gate Propagation Delay: Transient**



At t=0, B and C switch from low to high  $(V_{DD})$  and A remains low.


This breaks the path from  $\boldsymbol{V}_{OUT}$  to  $\boldsymbol{V}_{DD}$ 

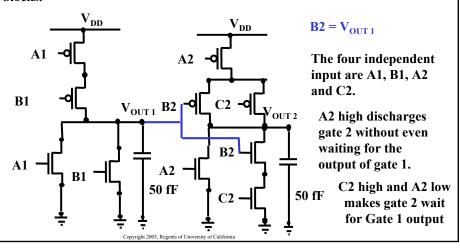
And opens a path from  $V_{OUT}$  to GND

 $C_{OUT}$  discharges through the pull-down resistance of gates B and C in series.

$$\Delta t = 0.69(R_{DB} + R_{DC})C_{OUT}$$
  
= 0.69(20k\Omega)(50fF) = 690 ps

The propagation delay is two times longer than that for the inverter!






Lecture 19: 10/30/03 A.R. Neureuther

Version Date 10/28/03

# Logic Gate Cascade

To avoid large resistance due to many gates in series, logic functions with 4 or more inputs are usually made from cascading two or more 2-4 input blocks.

