EECS 42 Intro. Digital Electronics Fall 2003 \quad Lecture 19: 1003003 A.R. Neureuther
Version Date 10/2803
EECS 42 Introduction Digital Electronics
Andrew R. Neureuther
$2^{\text {nd }}$ Midterm 11/6 See Coverage Sheet
Lecture \#19 Logic Transients
Handout of Wed Lecture.
A) Quiz
B) Worst Case CMOS Delay
C) Delay in CMOS Cascade
http://inst.EECS.Berkeley.EDU/~ee42/

A) Quiz
B) Worst Case CMOS Delay
C) Delay in CMOS Cascade
http://inst.EECS.Berkeley.EDU/~ee42/

See the further examples of op-amp circuits in the reader

EECS 42 Intro. Digital Electronics Fall $2003 \quad$ Lecture 19: 10/30/03 A.R. Neureuther Version Date 10/28/03

Logic Gate Propagation Delay: Initial State

EECS 42 Intro. Digital Electronics Fall 2003 \quad Lecture 19: 10/30/03 A.R. Neureuther

Version Date 10/28/03
Logic Gate Propagation Delay: Transient
$\frac{V_{D D}}{\xi_{i}^{?} R_{U}}$

To avoid large resistance due to many gates in series, logic functions with 4 or more inputs are usually made from cascading two or more 2-4 input blocks.

