## EECS 42 Introduction to Electronics for Computer Science

 Andrew R. Neureuther
## Lecture \# 20 Logic Transients

Handout of Monday Lecture.
A) $2^{\text {nd }}$ Midterm Review (Cont.)
B) Intenal Path Propagation Delay
C) Cascade CMOS elements
D) Logic Feedback creates memory
http://inst.EECS.Berkeley.EDU/~ee42/

## OP-AMP AND USE OF FEEDBACK

A very high-gain differential amplifier can function in an extremely linear fashion as an operational amplifier by using negative feedback.


Circuit Model
Negative feedback $\Rightarrow$ Stabilizes the output
We can show that that for $A \rightarrow \infty$ and $R_{i} \rightarrow \infty$,

$$
\mathrm{V}_{0} \cong \mathrm{~V}_{\mathrm{IN}} \cdot \begin{array}{cl}
\mathrm{R}_{1}+\mathrm{R}_{2} & \begin{array}{l}
\text { Stable, finite, and independent } 0 \\
\text { the properties of the OP AMP! }
\end{array}
\end{array}
$$

## IDEAL OP-AMPS ANALYSIS TECHNIQUE

Assumption 1: The potential between the op-amp input terminals, $v_{(+)}-$ $v_{(-)}$, equals zero.

Assumption 2: The currents flowing into the op-amp's two input terminals both equal zero.


## CASCADE OP-AMP CIRCUITS



How do you get started on finding $\mathbf{V}_{\mathrm{o}}$ ?
Hint: Identify Stages
Hint: $\mathrm{I}_{\text {IV }}$ does not affect $\mathbf{V}_{\mathbf{O}}$
See the further examples of op-amp circuits in the reader

## Composite Current Plot for the 42S_NMOS Circuit with $200 \mathrm{k} \Omega$ Load to Ground



Copyright 2003, Regents of University of California

EECS 42 Intro. Digital Electronics Fall 2003 Lecture 20: 11/4//03 A.R. Neureuther Version Date 11/01/03
Composite $\mathrm{I}_{\text {OUT }}$ vs. $\mathrm{V}_{\text {OUT }}$ to Find Points That Satisfies Both Devices for Each $\mathrm{V}_{\text {IN }}$


Version Date 11/01/03

## Voltage Transfer Function for the Complementary Logic Circuit




## Logic Gate Propagation Delay: Initial State



At $\mathbf{t}=\mathbf{0}, \mathrm{B}$ and C switch from low to high $\left(V_{\mathrm{DD}}\right)$ and $A$ remains low.

This breaks the path from $V_{\text {OUT }}$ to $V_{D D}$
And opens a path from $V_{\text {out }}$ to GND
$\mathrm{C}_{\text {out }}$ discharges through the pull-down resistance of gates $B$ and $C$ in series.

$$
\begin{aligned}
\Delta t & =0.69\left(\mathrm{R}_{\mathrm{DB}}+\mathrm{R}_{\mathrm{DC}}\right) \mathrm{C}_{\mathrm{OUT}} \\
& =0.69(20 \mathrm{k} \Omega)(50 \mathrm{fF})=690 \mathrm{ps}
\end{aligned}
$$

The propagation delay is two times longer than that for the inverter!

## Logic Gate: Worst Case Scenarios



What combination of previous and present logic inputs will make the Pull-Up the fastest?


Fastest
What combination of previous and overall? present logic inputs will make the
Pull-Up the slowest? Slowest overall?

## Logic Gate Cascade

To avoid large resistance due to many gates in series, logic functions with 4 or more inputs are usually made from cascading two or more 2-4 input blocks.


Feedback Can Provide Memory


## Example of the Opposite State



## Adding Memory Controls

S


Set-Reset Flip-Flop


