Lecture 21: 11/13/03 A.R. Neureuther

Version Date 11/12/03

EECS 42 Introduction Digital Electronics Andrew R. Neureuther

Lecture # 21 Clock Operation of Latches

Handout of This Lecture.

- A) 2nd Midterm Returned
- **B) CMOS Propagation Delays**
- C) Latch circuit to hold/release signals
- D) Cascade CMOS elements with latches

http://inst.EECS.Berkeley.EDU/~ee42/

Copyright 2003, Regents of University of California

EECS 42 Intro. Digital Electronics Fall 2003

Lecture 21: 11/13/03 A.R. Neureuther

Version Date 11/12/03

Results Midterm #2

	P1	P2	Р3	P4	Tot
	25	25	28	22	100
Ave	22.4	15	18.8	14.3	70.4
Ave/Max	0.90	0.60	0.67	0.65	0.70
StDev	4.9	8.6	7.7	6.3	20.1
StDev/Max	0.20	0.35	0.28	0.29	0.20

High 100 (2), Low 12, Median 74

Approximate Scale:

Copyright 2003, Regents of University of California

EECS 42 Intro. Digital Electronics Fall 2003

Lecture 21: 11/13/03 A.R. Neureuther

Version Date 11/12/03

Logic Gate Cascade

To avoid large resistance due to many gates in series, logic functions with 4 or more inputs are usually made from cascading two or more 2-4 input blocks.

 $B2 = V_{OUT 1}$

The four independent input are A1, B1, A2 and C2.

A2 high discharges gate 2 without even waiting for the output of gate 1.

C2 high and A2 low makes gate 2 wait for Gate 1 output

Lecture 21: 11/13/03 A.R. Neureuther

Version Date 11/12/03

Propagation Delays Add in Cascade

$$\tau_{PD_CASCADE} = \tau_{PD_1} + \tau_{PD_2}$$

Copyright 2003, Regents of University of California

EECS 42 Intro. Digital Electronics Fall 2003

Lecture 21: 11/13/03 A.R. Neureuther

Version Date 11/12/03

Data Synchronization problem

- Combinatorial logic gates can give incorrect answers prematurely and may take several gate propagation delays produce an answer.
- Clocks (signals as to when to proceed) and latches (which capture and hold the correct outputs) can provide synchronization.

Copyright 2003, Regents of University of California

Lecture 21: 11/13/03 A.R. Neureuther

Version Date 11/12/03

A Double Latch is an Edge-Triggered D Type Flip-Flop

During the low part of the clock cycle this circuit records the input value and when the clock goes high drives $V_{OUT\,2}$ to the voltage level that arrived. (This is the classic function of a D flip-flop.)

Note that this circuit is not fooled by noise on the input and makes its decision on the rising edge of the clock (edge-triggered).

EECS 42 Intro. Digital Electronics Fall 2003

Lecture 21: 11/13/03 A.R. Neureuther

Version Date 11/12/03

Example of Circuits to Integrate with Latches

$$\tau_{PD_CASCADE} = \tau_{PD_1} + \tau_{PD_2}$$

Copyright 2003, Regents of University of California

