EECS 42 Intro. Digital Electronics Fall 2003 Lecture 21: 11/13/03 A.R. Neureuther ersion Date 11/12/03

EECS 42 Introduction Digital Electronics

 Andrew R. NeureutherLecture \# 21 Clock Operation of Latches
Handout of This Lecture.
A) $\mathbf{2}^{\text {nd }}$ Midterm Returned
B) CMOS Propagation Delays
C) Latch circuit to hold/release signals
D) Cascade CMOS elements with latches
http://inst.EECS.Berkeley.EDU/~ee42/

EECS 42 Intro. Digital Electronics Fall $2003 \quad$ Lecture 21: 11/13/03 A.R. Neureuther
Results Midterm \#2

	P1	P2	P3	P4	Tot
	25	25	28	22	100
Ave	22.4	15	18.8	14.3	$\mathbf{7 0 . 4}$
Ave/Max	0.90	0.60	0.67	0.65	0.70
StDev	4.9	8.6	7.7	6.3	$\mathbf{2 0 . 1}$
StDev/Max	0.20	0.35	0.28	0.29	0.20

High 100 (2), Low 12, Median 74
Approximate Scale:
$\mathrm{A}+=97, \mathrm{~A}=91, \mathrm{~A}-=86, \mathrm{~B}+=81, \mathrm{~B}=76, \mathrm{~B}-=70$,

$$
C+=64, C=57, c-=50, D+=43, D=36, D-=30
$$

EECS 42 Intro. Digital Electronics Fall 2003 Lecture 21: 11/13/03 A.R. Neureuther
 Clock Signal Definitions

Period $=\mathbf{P}=\tau_{\text {HIGH }}+\tau_{\text {LOW }}$
Frequency $=1 / \mathbf{P}=1 /\left(\tau_{\text {HIGH }}+\tau_{\text {Low }}\right)$
Duty Cycle $=\left(\tau_{\text {HIGH }}\right) /\left(\tau_{\text {HIGH }}+\tau_{\text {LOw }}\right)$

EECS 42 Intro. Digital Electronics Fall 2003 Lecture 21: 11/13/03 A.R. Neureuther Version Date 11/12/03

Logic Gate Cascade

To avoid large resistance due to many gates in series, logic functions with 4 or more inputs are usually made from cascading two or more 2-4 input blocks.

EECS 42 Intro. Digital Electronics Fall 2003
Lecture 21: 11/13/03 A.R. Neureuther

Data Synchronization problem

- Combinatorial logic gates can give incorrect answers prematurely and may take several gate propagation delays produce an answer.
- Clocks (signals as to when to proceed) and latches (which capture and hold the correct outputs) can provide synchronization.

$\begin{array}{rr}\text { EECS } 42 \text { Intro. Digital Electronics Fall 2003 } & \text { Lecture 21: 11/13/03 A.R. Neureuther } \\ \text { Version Date 11/12/03 }\end{array}$ Example of Circuits to Integrate with Latches

$$
\tau_{\text {PD_CASCADE }}=\tau_{\text {PD_1 }}+\tau_{\text {PD_2 }}
$$

