EECS 42 Intro. Digital Electronics, Fall 2003 Lecture 26: 12/04/03 A.R. Neureuther Version Date 11/30/03
 Review for the Final Exam

Likely 7 Problems * Possible Bonus $=2 / 3$ best $+1 / 3$ worst Midterm Bonus $=2 / 3$ best $+1 / 3$ worst

Transients*

Logic Functions and Timing Diagrams
Circuit Analysis with dependent Sources
Op-Amps*
Load Line and Static Analysis of Logic Gates
CMOS Logic Functions, Delay, Latches
Diode Circuit Analysis, Voltage Controlled R
See Web Site under Exams for Coverage, Review Sessions and Office Hours Copyright 2003, Regents of University of California

EECS 42 Intro. Digital Electronics, Fall 2003 \quad Lecture 26: 12/04/03 A.R. Neureuther
Logical Synthesis

Guided by DeMorgan's Theorem

DeMorgan's Theorem :

$$
\mathrm{A}+\mathrm{B}+\mathrm{C}=\overline{[\overline{\mathrm{A}} \overline{\mathrm{~B}} \overline{\mathrm{C}}]} \quad \text { or } \quad \overline{\mathrm{A}}+\overline{\mathrm{B}}+\overline{\mathrm{C}}=\overline{[\mathrm{A} \mathrm{~B} \mathrm{C}]}
$$

Example of Using DeMorgan's Theorem:

Version Date 11/30/03

Feedback Can Provide Memory

Lecture 19

becomes valid two
the invert function takes one delay and the NAND function a second.

Latency L is the delay between the rising edge of the clock on $L 0$ and the data being valid internally in the last latch.
$\begin{aligned} \mathbf{L}_{\text {LUMPED }} & =\tau_{\mathrm{L}^{2} \text { EXT }}+\tau_{\text {GATE1 }}+\tau_{\text {GATE } 2}+\tau_{\mathrm{L} \text { INT }} \\ & =2 \tau_{\mathrm{LIV}}+2 \tau_{\mathrm{INV}}+2 \tau_{\mathrm{IV}}+2 \tau_{\mathrm{IIV}}=\mathbf{8} \tau_{\mathrm{INV}}\end{aligned}$
$\mathbf{L}_{\text {PIPLINED }}=\tau_{\mathrm{L}_{-} \mathrm{EXT}}+\tau_{\text {GATE1 }}+\tau_{\mathrm{L}_{-} \mathrm{INT}}+\tau_{\mathrm{L}_{-} \mathrm{EXT}}+\tau_{\text {GATE2 }}+\tau_{\mathrm{L}_{-} \text {INT }}$

$$
=2 \tau_{\mathrm{INV}}+2 \tau_{\mathrm{INV}}+2 \tau_{\mathrm{INV}}+2 \tau_{\mathrm{INV}}+2 \tau_{\mathrm{INV}}+2 \tau_{\mathrm{INV}}=12 \tau_{\mathrm{INV}}
$$

Throughput T is the bits per second through the latches and is the maximum clock frequency.
$\begin{aligned} \mathbf{P}_{\text {LUMPED }} & =\tau_{\mathrm{L}_{-} \mathrm{EXT}}+\tau_{\mathrm{GATE} 1}+\tau_{\mathrm{GATE} 2}+\tau_{\mathrm{L}_{-\mathrm{INT}}} \\ & =2 \tau_{\mathrm{INY}}+2 \tau_{\mathrm{INY}}+2 \tau_{\mathrm{INV}}+2 \tau_{\mathrm{INV}}=\mathbf{8} \tau_{\mathrm{INV}}\end{aligned}$ $F_{\text {LUMPED }}=1 / 8(345 \mathrm{ps})=0.36 \mathrm{GHz}$
$\mathbf{P}_{\text {PIPELINED }}=\tau_{\mathrm{L}_{-} \mathrm{EXT}}+$ MAX $\left(\tau_{\text {GATE } 1}, \tau_{\text {GATE } 2}\right)+\tau_{\mathrm{L}_{-} \mathrm{INT}}$
$=2 \tau_{\text {INV }}+2 \tau_{\text {INV }}+2 \tau_{\text {INV }}=6 \tau_{\text {INV }} \quad F_{\text {PIPLINED }}=1 / 6(345 \mathrm{ps})=0.48 \mathrm{GHz}$
Copyright 2003, Regents of University of California

EECS 42 Intro. Digital Electronics, Fall 2003 Lecture 26: 12/04/03 A.R. Neureuther
Lecture 25: on blackboard
Version Date 11/30/03

Limitations of Power Consumption

- The resistive load of NMOS results in D.C. current and hence static power consumption given by the product of current times voltage.
- CMOS avoids this static loss as the pull-up device shuts off the current completely.
- CMOS still suffers a.c. power consumption that is proportional to the switching frequency.
- The energy expended per cycle of in charging and discharging can never be less than CV^{2}

$$
R=(L / W) / \mu Q=L / W R
$$

EECS 42 Intro. Digital Electronics, Fall 2003 \quad Lecture 26: 12/04/03 A.R. Neureuther

Relation of Current to Physical Parameters

Geometrical Layout

$$
\mu_{n}=500\left(\mathrm{~cm}^{2} / V s\right) \quad \mu_{p}=150\left(\mathrm{~cm}^{2} / V s\right)
$$

$$
C_{o x}=\frac{\varepsilon_{o x}}{t_{o x}}=\frac{\left(8.85 \times 10^{-14} \mathrm{~F} / \mathrm{cm}\right)(3.9)}{6 \times 10^{-7} \mathrm{~cm}}=5.75 \times 10^{-7} \mathrm{~F} / \mathrm{cm}^{2}
$$

$$
V_{\text {OUT-SAT-n }}=E_{\text {Crit }} \cdot L=10^{4}(\mathrm{~V} / \mathrm{cm}) \cdot 0.25 \times 10^{-4} \mathrm{~cm}=0.25 \mathrm{~V}
$$

Where \mathbf{R} is the resistance of a "square" of the film. Clearly if L is four times W, then $R=4 \mathbf{R}$

