EE 42 – Introduction to Electronics for Computer Science

Fall 2003,Prof. A. R. NeureutherDept. EECS, 510 Coryneureuth@eecs.berkeley.edu642-4590UC BerkeleyOffice HoursM1, Tu, Tu 10:30-11:30, F 1Course Web Sitehttp://www-inst.eecs.berkeley.edu/~ee42/

Problem Set # 9

Due:1 PM Nov 5th, 2003 in box in 240 Cory

Midterm Thursday November 6th

In class, Closed Book, Closed Notes, Device Equations Provided

Review Session #1: 5 PM Tuesday Nov 4th, meet at 241 Cory

Review Session #2: 6 PM Wednesday Nov 5th, meet at 241 Cory

9.1 Delay in Transistor Circuits

Use the logic circuit to the right with $R_{PU} = 20k\Omega$, $R_{PD} = 10k\Omega$, and C = 20 fF.

- a) For a transition from high voltage to low voltage, where $V_{DD} = 5V$, determine the delay in the system.
- b) For a transition from low to high voltage, determine the delay in the system.
- c) What could you do to improve worst case delay by a factor of 2?

9.2 More Delay, and Delay Compensation

Take the following model of a logic circuit. C = 20 fF.

- a) Determine the truth table for this circuit. What kind of logic gate is this? (Suppose A & B are input voltages controlling the switches. On pull-up, if control is low, you close the switch. On pull-down, if control is high, you close the switch. Otherwise, the switch is open)
- b) Given that all resistors are $10k\Omega$, determine worst case delay from low to high voltage. Assume the pull-up and pull-down networks never "pull" at the same time.
- c) Determine the worst case delay from high to low voltage.
- d) What could you do to equalize the worst case delays? (Hint adjust the W/L to adjust the resistance.)

9.3 Review on Op-Amps

For the Op-Amp circuit to the right find V_{OUT1} and V_{OUT2} as a function of V_{IN1} . Be sure to show your fundamental assumptions. (Watch out this circuit may not be very useful.)

9.4 Review on Three Terminal Devices

Use the EE42 Device Equations. $V_{DD} = 3 \text{ V}$ and $R = 60 \text{k}\Omega$.

- a) Plot the I_{OUT} vs. V_{OUT} graph for the circuit external to the NMOS.
- b) Determine the NMOS current and voltage when $V_{IN} = 0$, 1,2, and 3V.
- c) Sketch a rough plot of V_{OUT} vs. V_{IN} from your data in b).

$$I_{OUT-SAT-n} = k_n' \left(\frac{W}{L}\right)_n (V_{IN} - V_{Tn}) V_{OUT-SAT-n}$$
$$I_{OUT-SAT-p} = k_p' \left(\frac{W}{L}\right)_p (V_{DD} - V_{IN} - |V_{Tp}|) V_{OUT-SAT-p}$$

	T	Vdd	
$R = 60k\Omega$	F	Vout	
Vin	NMOS	I = 30	μA
<u>_</u>		<u>•</u>	
0.00	30 .		

Vdd

Vdd

	V _T (V)	V _{OUT-SAT} (V)	k' (μA/V ²)
NMOS	0.43	0.63	100
PMOS	0.4	1	25
ъ ·		1 1 ' 337/7	2

For a minimum sized device W/L =2