UNIVERSITY OF CALIFORNIA, BERKELEY
 College of Engineering
 Department of Electrical Engineering and Computer Sciences

Last modified on September 24, 2003 by Eric Chung (e_chung @uclink.berkeley.edu)
Prof. Neureuther

Homework 4 Solutions

Problem 4.1. Transient Analysis

a) Remember the steps for solving RC circuits:

1) Identify the initial voltage on the capacitor.

Since the capacitor is initially uncharged, $v_{C}(t=0)=0 \mathrm{~V}$.
2) Identify the final voltage on the capacitor (as $t \rightarrow \infty$) by connecting the switch and opencircuiting the capacitor. Remember, when we open-circuit a capacitor, we are modeling steadystate, when no more current flows through a capacitor.

Note that $v_{C}(t \rightarrow \infty)=V_{A}-V_{B}$. Since no current flows across the 2 k resistor on the left, then the voltage difference across the 2 k resistor must be zero. Hence, $V_{A}=12 \mathrm{~V}$. Similarly, since no current flows across the 10 k resistor, the voltage difference across it must be zero. Hence, $V_{B}=4 V$.

Therefore $v_{C}(t \rightarrow \infty)=V_{A}-V_{B}=12 V-4 V=8 V$.
3) Identify the equivalent resistance $\mathrm{R}_{\mathrm{e} q}$ seen by the capacitor. To identify this equivalent resistance, we open-circuit the capacitor and kill all sources (by open-circuiting any current sources and shorting any voltage sources):

The equivalent resistance $\mathrm{R}_{\mathrm{e} q}$ seen by the two terminals of the capacitor should be $2 k+10 k=12 k$. If this is not obvious to you, consider modeling the short-circuit wire on the right of the figure above as a resistor with $\mathrm{R}=0$ (ideal wires have no resistance).

Note now that the two resistors on the right are in parallel. $2 k \| 0 k=\frac{(2 k)(0 k)}{2 k+0 k}=0 k$

Thus $\mathrm{R}_{\mathrm{e} q}=12 k$.
4) Using the formula for transient voltage on a capacitor:
$v_{C}(t)=V_{\text {FINAL }}+\left(V_{\text {INIIIAL }}-V_{\text {FINAL }}\right) e^{-t / R C}$
Note: $R C=\left(R_{E Q}\right)(C)=(12 k)(5 p F)=60 n S$
$v_{C}(t)=8 V+(0 V-8 V) e^{-t / 60 n S}$
$v_{C}(t)=8 V-8 e^{-t / 60 n S} V$

Problem 4.2. Transient Analysis Continued

a) To compute the Thevenin equivalent circuit, it is necessary to calculate three parameters:
$V_{T H}=V_{O C}$
$I_{S C}=I_{T H}$
$R_{T H}=\frac{V_{T H}}{-I_{S C}}$
To calculate $V_{O C}$, we open-circuit the voltage of interest at $V_{\text {OUT }}$:

If we apply KCL at $V_{O C}$, then $I_{1}+I_{2}=0$
$I_{1}=\frac{5 \mathrm{~V}-V_{O C}}{1 \mathrm{k}}$ and $I_{2}=2.5 \mathrm{~mA}$
$I_{1}+I_{2}=\frac{5 V-V_{O C}}{1 k}+2.5 m A=0$
$V_{O C}=V_{T H}=7.5 \mathrm{~V}$
Now we have to calculate $I_{S C}$ (defined going into the top terminal). Short-circuiting the nodes at $V_{\text {OUT }}$, we obtain the new circuit:

If we apply KCL at the center node, then $I_{1}+I_{2}+I_{S C}=0$
$I_{1}=\frac{5 \mathrm{~V}-0 \mathrm{~V}}{1 \mathrm{k}}$ and $I_{2}=2.5 \mathrm{~mA}$
$I_{S C}=-\frac{5 V}{1 k}-2.5 m A=-7.5 m A$
Since we know $I_{S C}$, we can compute $R_{T H}=\frac{V_{T H}}{-I_{S C}}=\frac{7.5 \mathrm{~V}}{-7.5 \mathrm{~mA}}=1 \mathrm{k}$
Knowing $V_{T H}$ and $R_{T H}$, we can derive the equivalent Thevenin circuit:

Applying the steps outlined earlier, we know that $V_{\text {INITIAL }}=0 V$ (since the capacitor is uncharged) and $V_{F I N A L}=0 V$. The equivalent resistance $R_{E Q}=1 k$. Therefore $R C=(1 k)(2 p F)=2 n S$.

Applying the formula for transient voltage across a capacitor, we obtain:

$$
\begin{aligned}
& v_{C}(t)=V_{\text {FINAL }}+\left(V_{\text {INITIAL }}-V_{\text {FINAL }}\right) e^{-t / R C} \\
& v_{C}(t)=7.5 \mathrm{~V}+(0 \mathrm{~V}-7.5) e^{-t / 2 n S} \\
& v_{C}(t)=7.5 \mathrm{~V}-7.5 e^{-t / 2 n S}
\end{aligned}
$$

c) Even if we have a time-varying voltage, Ohm's law still applies:
$\frac{v_{C}(t)-5 V}{1 k}=i_{R}(t)=\frac{\left(7.5 V-7.5 V e^{-t / R C}\right)-5 \mathrm{~V}}{1 k}$
$i_{R}(t)=2.5 m A-7.5 e^{-t / R C} m A$
d) $E=\frac{1}{2} C V_{F I N A L}^{2}-\frac{1}{2} C V_{\text {INIIIAL }}^{2}=\frac{1}{2}(2 p F)(7.5 V)^{2}-\frac{1}{2}(2 p F)(0 V)^{2}$
$E=56.25 \mathrm{pJ}$

Problem 4.3. Nodal Analysis.

a) The two unknowns in the circuit are V_{A} and V_{B}. If we perform KCL at both nodes, we obtain:
$\frac{V_{A}-5 V}{1 k}+(-2.5 m A)+\frac{V_{A}-V_{B}}{2 k}=0$
$\frac{V_{B}-V_{A}}{2 k}+2.5 m A+\frac{V_{B}-0 V}{5 k}=0$
b) Solving for both variables, we obtain: $V_{A}=5 \mathrm{~V}, V_{B}=0 \mathrm{~V}$.

Problem 4.4. Nodal Analysis Continued.
a) We can make this circuit easier to solve by placing the ground node where three resistors touch (gives us more zeros in our equations):

We can perform KCL at each of the three unknown nodes (A, B, C):
Node A: $\frac{V_{A}-0 V}{2 k}-2 m A+\frac{V_{A}-V_{B}}{0.5 k}=0$
Node B: $\frac{V_{A}-V_{B}}{0.5 k}+\frac{V_{C}-V_{B}}{0.4 k}+\frac{0 V-V_{B}}{3 k}=0$
Node C: $2 m A+\frac{V_{C}-0 V}{5 k}+\frac{V_{C}-V_{B}}{0.4 k}=0$
b) Solving for all the voltages, we obtain:
$V_{A}=0.58 V, V_{B}=-0.27 V, V_{C}=-1 V$

