UNIVERSITY OF CALIFORNIA, BERKELEY
 College of Engineering

 Department of Electrical Engineering and Computer SciencesLast modified on Oct 16th, 2003 by Jie Zhou (jiezhou@eecs.berkeley.edu)
Prof. Neureuther
Homework 7 Solutions

7.1 Dependent Sources

a) There three steps to lead you to the answer; first, we can see that Vin is equal to V - in magnitude. Then if A goes to infinity, the actual circuit resembles a voltage divider for V- and Vo. So the last step is to solve for V_{0} in terms of $\mathrm{V}_{\mathbb{N}}$.

$$
\begin{aligned}
V_{0}=V_{\text {IN }} & \frac{A\left(R_{1}+R_{2}\right)}{(A+1) R_{1}+R_{2}} \\
\equiv & V_{\text {IN }} \frac{R_{1}+R_{2}}{R_{1}}=10 V_{\text {IN }} \\
& \text { if } A \rightarrow \infty
\end{aligned}
$$

b) The gain $\left(\mathrm{Vo} / \mathrm{V}_{\text {IN }}\right)$ is greater than unity as shown in part a.

7.2 Ideal Op-Amp

a) Assuming ideal op amp, 1) $\mathrm{V}_{+}=\mathrm{V}_{-}$; 2) no current into + and - terminals, so $\mathrm{V}-=\mathrm{V}_{+}=\mathrm{V} 2$ holds.

KCL at node V -, we get: $\quad \frac{\mathrm{V} 2-\mathrm{V} 1}{\mathrm{R} 1}+\frac{\mathrm{V} 2-\mathrm{Vout}}{\mathrm{R} 3}=0$
Solve, we have: \quad Vout $=\mathrm{V} 2 \cdot\left(1+\frac{\mathrm{R} 3}{\mathrm{R} 1}\right)-\mathrm{V} 1 \cdot \frac{\mathrm{R} 3}{\mathrm{R} 1}$
b) VCVS (Voltage controlled voltage source) is a voltage source, so R_{L} at the output in parallel to the VCVS will not affect the voltage.
c) The Op amp is ideal, therefore by definition, there is no current that is flowing through R_{2}, So Vo is independent of the value of R_{2}.

7.3 Cascade Op-Amps

a) Let's look at the first stage, which consists of the first Op-Amp with two resistors. For ideal Op-Amps, the two inputs are equal, so the voltage on the negative input V_{-}is equal to V 1 . We can use voltage divider to find an expression for Vo_{1} and we get:

$$
\mathrm{Vol}=\mathrm{V} 1 \cdot\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)
$$

b) The output of the second Op-Amp is dependent on the output of the first Op-Amp, so we can derive an expression of Vo2 in terms of Vo1, V2, R3 and R4. Then we can plug
in the result we obtained for Vo1 in part a) into the equation that we have derived for Vo2.

$$
\mathrm{Vo} 2=\mathrm{Vo1} \cdot\left(1+\frac{\mathrm{R} 4}{\mathrm{R} 3}\right)-\mathrm{V} 2 \cdot \frac{\mathrm{R} 4}{\mathrm{R} 3}=\mathrm{V} 1 \cdot\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right) \cdot\left(1+\frac{\mathrm{R} 4}{\mathrm{R} 3}\right)-\mathrm{V} 2 \cdot \frac{\mathrm{R} 4}{\mathrm{R} 3}
$$

7.4 Dependent Sources

a) Do KCL at node V_{E}, we find $V_{E}=\beta i b^{*} R_{E}+i b^{*} R_{E}$ $\underline{\mathrm{V}_{\mathrm{E}}=(\beta+1) \mathrm{ibRE}}$
b) Vtest is the sum of two voltages, Ve and the voltage drop across Rin, Thus:
$\mathrm{V}_{\text {TEST }}=\mathrm{ibRin}+\mathrm{V}_{\mathrm{E}}$.
Plug the answer from part a) into this equation, we have:
$\underline{\mathrm{V}_{\mathrm{TEST}}}=\mathrm{ib} \mathrm{RIN}_{\mathrm{IN}}+(\beta+1) \mathrm{ib} \mathrm{RE}$
c) The current flowing between the terminals AA^{\prime} ' is ib, and the voltage across AA^{\prime} ' is Vtest, thus the resistance seen looking into AA' is Vtestib and it is equal to:
$\underline{\mathrm{V}_{\text {TEST }} / \mathrm{b}}=\operatorname{RIN}+(\beta+1) \mathrm{RE}^{\text {R }}$

