Today: (13.3, 15.1, 15.2)

Transistor switches

Bipolar Transistor (npn and pnp)

• DTL and TTL Logic Circuits

C.T.Choi

1

3

C.T.Choi

Semiconductors

- Materials silicon crystal
- Electrical conduction in semiconductors can take place when negative charged electrons or positive charged holes (absent of electrons) move through the crystal.

- Material contain primarily free electrons is known as n-type semiconductor
- Material contain primarily holes is known as p-type semiconductor

EECS 42 Spring 2000 Lecture 13

Diodes

Transistors/Transistors switches/DTL/TTL

• When p-type and n-type materials are placed in contact, the result structure is called pn junction.

- In p-type material, holes are the majority carriers, electrons are minority carriers.
- In n-type material, electron are the majority carriers, holes are minority carriers.
- Three phenomena: (1) one way conduction; (2) injection of
 minority carriers when forward biased; (3) collection of
- •minority carriers when zero or reverse biased.

EECS 42 Spring 2000 Lecture 13

Forward Bias/Reverse Bias

4

2

C.T.Choi

C. T. Choi

EECS 42 Spring 2000 Lecture 13

Example

 A bipolar transistor is connected as shown. Assume ic is related to the base current i_R according to $i_{C} = 100i_{B}$. I_{BB} is constant, i_{S} is a small time varying input current, $i_s = I_o \cos(\omega t)$. 5000 Ω Collector (n-type) Find v_{out} if $I_{BB}=10\mu A$, $I_{o}=4\mu A$, $V_{cc}=10V$ Base p-type) I_{BB} (1) is Emitter (n-type) Based on Ohm's law: $v_{out} = V_{CC} - R_C i_C = V_{CC} - R_C (100 i_B)$ $v_{out} = V_{CC} - R_C 100(I_{BB} + i_S)$ $v_{out} = V_{CC} - (5000)100(10 \times 10^{-6} + 4 \times 10^{-6} \cos \omega t)$ $v_{out} = 5 - 2\cos(\omega t)V$

The arrow indicates the direction of the current flow. By KCL: $i_E + i_B + i_C = 0$ By KVL: $V_{FR} + V_{RC} + V_{CF} = 0$

Conventions & symbols

EECS 42 Spring 2000 Lecture 13

C.T.Choi

9

Bipolar transistor in active mode

Active mode of transistor means emitter injects electrons into the base-base-emitter (pn junction) is forward biased.

V_{BE} must be sufficiently positive to make the sufficient current flow in the base-emitter junction. Most electrons injects by the

emitter are collected by the collector, the fraction are defined as α . $i_C = -\alpha i_F$

(-ve sign because the actual i_{F} is going the opposite direction) \pm

The circuit showing a appropriate

Collector

10

C.T.Choi

C.T.Choi

C.T.Choi

13

(Continue)

In active mode, base-emitter junction acts like a forward biased pn junction

 $i_E = -I_{ES} \left(e^{q v_{BE}/kT} - 1 \right) \approx -I_{ES} \left(e^{q v_{BE}/kT} \right)$

 I_{ES} is a constant determined by the design of the transistor. -1 is dropped because at active mode, exp(qV/kT) >>1.

Any small change in V_{BE} can lead to large change in i_E and i_C . (e.g. For active mode, V_{BE} is changed by 0.018V, i_E is doubled.

Blas polarities for transistors operating in active modes

Parameters	npn	pnp
V _{CE}	positive	negative
V_{BE}	positive	negative
V _{CB}	positive	negative
i_E	negative	positive
i_B	positive	negative
i_C	positive	negative ¹⁴

EECS 42 Spring 2000 Lecture 13

C.T.Choi

Active, Saturation, Cutoff regions

Active region: V_{CE} >0.7V, i_C is independent of V_{CE} Cutoff region: i_B = 0, i_C is small.

Saturation region: Typically when V_{CE} is less than 0.7V. Low value of V_{CE} means that the collector base junction has lost its reverse bias -- the collector lost its ability to collect electrons, i_C becomes less than βi_B . (undesirable in amplifier, but useful in digital circuits)

16

C T Choi

Saturation region

- How saturation comes?
- Applies Ohm's law to the ckt as shown:

$$v_{CE} = v_{CC} - i_C R_C$$

In active mode, $i_C = \beta i_B$

 $v_{CE} = v_{CC} - \beta i_B R_C$

As we increase i_{B} , V_{CE} decreases, eventually approach 0.7V. Collector junction lost its reverse bias and the transistor enter saturation mode. Any increase in i_B does not result in proportional increase in i_C ($i_C \neq \beta i_B$). V_{CE} decreases to a minimum value of approximately 0.2V.

In Saturation mode: (1)
$$i_B > i_C / \beta$$
 (2) $V_{CE} = V_{CE}(Sat) \approx 0.2V$

Example

C.T.Choi

Use graphical load-line method. Assume a imaginary break is made in the circuit as shown in the right.

i (mA) From KVL: $v_C = V_2 - i_R R$ Solutions: $V_c=5V$, $i_1=0\mu A$, $i_c=0mA$ (cutoff) $V_{c}=2.5V, i_{1}=5\mu A, i_{c}=i_{R}, i_{c}=0.5mA$ (active region) V_C=0.25V=V_{CF}, i₁=20µA, i_C=0.95mA ip versus v (Saturation region)

EECS 42 Spring 2000 Lecture 13

EECS 42 Spring 2000 Lecture 13

C.T.Choi

Assume high range is 4-5V. Low range is 0-0.5V. V_{CC} =5V

Assume $R_B = 1k\Omega$, with $V_{IN} = Iow$, results in an operating point where the load line meet the characteristic corresponding to $i_{B}=0$. (transistor in cutoff)

When V_{IN} = high, the base-emitter junction is forward biased.

$$i_B = \frac{V_{IN} - 0.7}{R_B}$$

Assume $i_B = 1 \text{ mA}$, average high voltage is $4.5V \Rightarrow R_B = 3.8 k\Omega$

17

i_C(mA) ▲

10

C. T. Choi

EECS42 Spring 2000 Lecture 13

İ

C.T.Choi

(Continue)

$$_{B} > \frac{i_{C}}{\beta} = \frac{V_{CC} - V_{CE}}{\beta R_{C}}$$

١/

$$v_{CE} = v_{CE (SAT)}$$
$$i_B > \frac{i_C}{\beta} = \frac{V_{CC} - V_{CE(SAT)}}{\beta R_C}$$

C.T.Choi

22

 $i_B (\mu A) = 150$

100

Saturation

EECS 42 Spring 2000 Lecture 13

C.T.Choi

21

Multiple Stages Digital Circuits (loaded circuit)

(continue)

Load

Cutoff

 $v_{CE}(V)$

When the input to the inverter in "high", it is important that the base current be large enough to drive the transistor to saturation.

When V_{in} is low ($V_{in} < 0.5V$)

When V_{in} is high (4< V_{in} < 5V)

 V_{CF} = High (5V, transistor in cutoff)

 $V_{CF} = low (0.2V, transistor in saturation)$

Notice V_{CE} is independent of $i_{B.}$ Whether i_{B} equals 150µA or 1mA

still gives approximately $V_{CE} = 0.2V$)

Until now, we have been ignoring the current coming from the next stage. (no load effect until now)

In the circuit above, when V_{out} is "low", i_{out} will normally be positive. Since i_{out} is not zero, we need to take it into account in our load calculation. By KCL:

$$i_{C} = \frac{V_{CC} - V_{CE(SAT)}}{\beta R_{C}} + i_{OUT} \implies i_{B} > \frac{i_{C}}{\beta} = \frac{V_{CC} - V_{CE(SAT)}}{\beta R_{C}} + \frac{i_{OUT}}{\beta}$$

 \therefore Larger i_B must be supplied when load currents are expected.

EECS 42 Spring 2000 Lecture 13

DTL (Diode Transistor Logic Circuits)

To simplify the analysis, we will approx. the voltage of a forward biased pn junction to be 0.7V.

Since we don't know which diode is forward bias/reverse bias, let's start by guessing the result, then check for consistency.

Let v_A and $v_B = 0V$, D_A and D_B are forward biased $\Rightarrow V_x=0.7V$

Since it takes V_x to be 2.1V to turns on D_1 , D_2 , and $T_1 \Rightarrow D_1$, D_2 , and T_1 are cutoff $\Rightarrow i_B=0$. $\Rightarrow V_{output}=V_{CC}=5V$. D_A , D_B on, D_1 , D_2 , and T_1 off, consistency check out ok.

24

DTL NAND gate summary

Output corresponding to the various inputs for the DTL NAND gate. C 1

	J		Conduction?					
v _A	v _B	v _X	[D_A	D _B	1	$D_1 D_2 T_1$	v _F
0	0.	0.7	7	Yes	Yes		No	5
0	0.3	0.7	7	Yes	No		No	5
0.2	4.5	0.9)	Yes	No	No		5
4.8	4.1	2.1		No	No		Yes	0.2
					,			
	v_A	v_B	v_F		А	В	F	
NAND	Low	Low	High		0	0	1	
truth table	Low	High	High		0	1	1	
	High High	Low High	High Low	_	1	0 1	1 0	
								2
EECS 42 Spring 2000 Lecture	2 13							C. T. Choi
_					differ			
Case 1: 0				are "lo	ow", out		s high. ^v çç	
E_1 is con E_2 and E_2 to high.							<u>ب</u>	R_2 R_3 $rac{1}{2}$ R_3
Since E_1 T_1 is on, $i_{B1} \cong (V_{CC})$	$V_x = 0$.7V,	d to lo	w	i _C I↓ E	$\begin{bmatrix} & & \\ & $	<u> </u>	
Notice that means T_2								

2 inputs connect to high, 1 input to low.

EEC S 42 Spring 2000 Lecture 13

C.T.Choi

 $\leq R_2$

₹*R*1

26

TTL NAND gate (different cases continue)

Case 2: All inputs are "high", output is low.

 E_1 , E_2 and E_3 are connected to high.

If T₁ were forward biased, $V_x = 0.7V + V_{CC}$ But V_x can not be higher than V_{CC} There is current flowing from V_{CC} thru R₁ into the base of T₁(reverse biased) into the base of T_2 and T_3 . $V_x=2.1V$, $V_y=1.4V$, T_3 is saturated (because the emitter of T₂ is driving the base of T₃) \Rightarrow V_{out} = low.

 \therefore one or more input are "low", output is high.

 T_2 and T_3 are turn off $\Rightarrow V_F = V_{CC}$

 $i_{B1} \gg i_{C1}/\beta \Rightarrow T_1 \text{ is saturated} \Rightarrow V_{CE1} = V_{CE(SAT)} \cong 0.2V. \Rightarrow V_Y \cong 0.2V$

 $(T_2 \text{ and } T_3 \text{ are performing the same function as } D_1, D_2, T_1 \text{ in DTL})$ V_{y} is smaller than 1.4V, the required voltage to activate T_{2} and $T_{3} \Rightarrow$ C.T.Choi

Summary

- Fundamental circuit of digital logic is the transistor switch, or inverter.
- Saturating bipolar transistor switches are used in diode-transistor logic (DTL) and transistor-transistor logic (TTL). The transistor acts as a switch that connects or disconnect the collector and the emitter. The switch is closed when sufficient base current is applied to saturate the transistor.
- Sufficient base current must be applied to BJT inverters to guarantee saturation under all load conditions.
- Logic family in different forms known as logic families.
- Blocks in the same family are compatible and can be interconnected.
- The TTL family and CMOS/BiCMOS family are the frequent used logic families.