## Transistors/Transistors switches/DTL/TTL

## Today: (13.3, 15.1, 15.2)

- Bipolar Transistor (npn and pnp)
- Transistor switches
- DTL and TTL Logic Circuits


## Semiconductors

- Materials - silicon crystal
- Electrical conduction in semiconductors can take place when negative charged electrons or positive charged holes (absent of electrons) move through the crystal.

- Material contain primarily free electrons is known as n-type semiconductor
- Material contain primarily holes is known as p-type semiconductor


## Diodes

- When p-type and n-type materials are placed in contact, the result structure is called pn junction.

- In p-type material, holes are the majority carriers, electrons are minority carriers.
- In n-type material, electron are the majority carriers, holes are minority carriers.
- Three phenomena: (1) one way conduction; (2) injection of -minority carriers when forward biased; (3) collection of -minority carriers when zero or reverse biased.


## Forward Bias/Reverse Bias



## $\mathrm{I}-\mathrm{V}$ characteristic of pn junction

- Ideal pn junction obeys the equation

$$
i=I_{s}\left(e^{q v / k T}-1\right)
$$

Where i and v are defined as shown in the diagram on the right
 k is Boltzmann's constant T is temperature in degree Kelvin $\mathrm{kT} / \mathrm{q}$ has a dimension of voltage, Vto (thermal voltage) $=\mathrm{kT} / \mathrm{q}$ Vto ( 300 K or room temperature) is 0.026 V .
$\mathrm{I}_{\mathrm{s}}$ is saturation current constant (but depends on the size of the junction, impurity concentration, and temperature)

## $\mathrm{I}-\mathrm{V}$ characteristic of pn junctions

$$
\begin{aligned}
& i=I_{s}\left(e^{q v / k T}-1\right) \\
& \text { With } \mathrm{I}_{\mathrm{s}}=10^{-13} \mathrm{~A}
\end{aligned}
$$



Vertical scale: 1mA per large division Horizontal scale: 1 V per large division


EECS 42 Spring 2000 Lecture 13
Bipolar Transistor (npn/pnp transistors)

Two pn junctions make a npn transistor


Forward bias

- A bipolar transistor is connected as shown.

Assume ic is related to the base current $i_{B}$ according to $i_{C}=100 i_{B} . I_{B B}$ is constant, $i_{S}$ is a small time varying input current, $\mathrm{i}_{\mathrm{S}}=\mathrm{I}_{\mathrm{o}} \cos (\omega \mathrm{t})$. Find $v_{\text {out }}$ if $I_{B B}=10 \mu \mathrm{~A}, I_{0}=4 \mu \mathrm{~A}, V_{c C}=10 \mathrm{~V}$

Based on Ohm's law:

$v_{\text {out }}=V_{C C}-R_{C} i_{C}=V_{C C}-R_{C}\left(100 i_{B}\right)$
$v_{\text {out }}=V_{C C}-R_{C} 100\left(I_{B B}+i_{S}\right)$
$v_{\text {out }}=V_{C C}-(5000) 100\left(10 \times 10^{-6}+4 \times 10^{-6} \cos \omega t\right)$
$v_{\text {out }}=5-2 \cos (\omega t) V$

## Bipolar transistor in active mode

Active mode of transistor means emitter injects electrons into the base--base-emitter (pn junction) is forward biased.
$V_{B E}$ must be sufficiently
 positive to make the sufficient current flow in the base-emitter junction.
Most electrons injects by the emitter are collected by the collector, the fraction are defined as $\alpha$. $i_{C}=-\alpha i_{E}$ (-ve sign because the actual $\mathrm{i}_{\mathrm{E}}$ is going the opposite direction) ${ }_{11}$

The arrow indicates the direction of the current flow.


By KCL:
$i_{E}+i_{B}+i_{C}=0$

By KVL:



$$
V_{E B}+V_{B C}+V_{C E}=0
$$

(npn transistor biased in active mode)

The circuit showing a appropriate polarity for active mode operation.


Another relationship:
$i_{C}=\beta i_{B}$
where $\beta=\frac{\alpha}{1-\alpha}$


Typically, $\left\{\begin{array}{l}\alpha \approx 1 \\ 50<\beta<1000\end{array}\right\}$ (when transistors are in active mode)

## (Continue)

In active mode, base-emitter junction acts like a forward biased pn junction

$$
i_{E}=-I_{E S}\left(e^{q v_{B E} / k T}-1\right) \approx-I_{E S}\left(e^{q v_{B E} / k T}\right)
$$

$\mathrm{I}_{\mathrm{ES}}$ is a constant determined by the design of the transistor. -1 is dropped because at active mode, $\exp (\mathrm{qV} / \mathrm{kT}) \gg 1$.

Any small change in $V_{B E}$ can lead to large change in $i_{E}$ and $i_{C}$. (e.g. For active mode, $\mathrm{V}_{\mathrm{BE}}$ is changed by $0.018 \mathrm{~V}, i_{E}$ is doubled.

## Graphical Characteristics

- Common emitter connection
(the emitter is common or connected to both the input and the output ports)

${ }^{\text {mess }}$ Bias polan

(polarity)
Parameters
npn
pnp

| $\mathrm{V}_{\mathrm{CE}}$ | positive | negative |
| :--- | :--- | :--- |
| $\mathrm{V}_{\mathrm{BE}}$ | positive | negative |
| $\mathrm{V}_{\mathrm{CB}}$ | positive | negative |
| $i_{E}$ | negative | positive |
| $i_{B}$ | positive | negative |
| $i_{C}$ | positive | negative |

EECS 42 Spring 2000 Lecture 13
C. т. Choi

## Active, Saturation, Cutoff regions



Active region: $\mathrm{V}_{\mathrm{CE}}>0.7 \mathrm{~V}$, $\mathrm{i}_{\mathrm{C}}$ is independent of $\mathrm{V}_{\mathrm{CE}}$ Cutoff region: $i_{B}=0, i_{C}$ is small.
Saturation region: Typically when $\mathrm{V}_{\mathrm{CE}}$ is less than 0.7 V .
Low value of $\mathrm{V}_{\mathrm{CE}}$ means that the collector base junction has lost its reverse bias -- the collector lost its ability to collect electrons, $\mathrm{i}_{\mathrm{C}}$ becomes less than $\beta \mathrm{i}_{\mathrm{B}}$. (undesirable in amplifier, but useful in digital circuits)

## Saturation region

- How saturation comes?
- Applies Ohm's law to the ckt as shown:
$v_{C E}=v_{C C}-i_{C} R_{C}$
In active mode, $i_{C}=\beta i_{B}$
$v_{C E}=v_{C C}-\beta i_{B} R_{C}$


## Example

Find the collector current of the transistor for the following 3 values of $i_{1}: 0,5$, and $20 \mu \mathrm{~A}$, Assume the transistor is a "typical" transistor who's characteristic is given in Figure 13.29, 13.30.


Use graphical load-line method. Assume a imaginary break is made in the circuit as shown in the right.

From KVL: $\quad v_{C}=V_{2}-i_{R} R$
Solutions:
$\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{i}_{1}=0 \mu \mathrm{~A}, \mathrm{i}_{\mathrm{C}}=0 \mathrm{~mA}$ (cutoff)
$\mathrm{V}_{\mathrm{C}}=2.5 \mathrm{~V}, \mathrm{i}_{1}=5 \mu \mathrm{~A}, \mathrm{i}_{\mathrm{C}}=\mathrm{i}_{\mathrm{R}}, \mathrm{i}_{\mathrm{C}}=0.5 \mathrm{~mA}$
(active region)
$\mathrm{V}_{\mathrm{C}}=0.25 \mathrm{~V}=\mathrm{V}_{\mathrm{CE}}, \mathrm{i}_{1}=20 \mu \mathrm{~A}, \mathrm{i}_{\mathrm{C}}=0.95 \mathrm{~mA}$
(Saturation region)


18

EECS 42 Spring 2000 Lecture 13
C. т. Choi

## Digital Circuits/Transistor Switches



Mode of transistor switch. The position of the switch is determined by whether $V_{\text {in }}$ is "low" or "high".

For a inverter circuit, a "low" $\mathrm{V}_{\text {in }}$ will disconnect the switch. $\left(\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{cc}}\right)$


Assume high range is $4-5 \mathrm{~V}$. Low range is $0-0.5 \mathrm{~V}$. $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$

Bipolar transistor inverter

 an operating point where the load line meet the characteristic corresponding to $i_{B}=0$. (transistor in cutoff)
When $\mathrm{V}_{\text {IN }}=$ high, the base-emitter junction is forward biased.

$$
i_{B}=\frac{V_{I N}-0.7}{R_{B}}
$$

Assume $\mathrm{i}_{\mathrm{B}}=1 \mathrm{~mA}$, average high voltage is $4.5 \mathrm{~V} \Rightarrow R_{B}=3.8 \mathrm{k} \Omega$

## (continue)



When $\mathrm{V}_{\text {in }}$ is low $\left(\mathrm{V}_{\text {in }}<0.5 \mathrm{~V}\right.$ )
$\mathrm{V}_{\mathrm{CE}}=$ High (5V, transistor in cutoff)

When $\mathrm{V}_{\text {in }}$ is high ( $4<\mathrm{V}_{\text {in }}<5 \mathrm{~V}$ ) $\mathrm{V}_{\mathrm{CE}}=$ low $(0.2 \mathrm{~V}$, transistor in saturation)

Notice $\mathrm{V}_{\mathrm{CE}}$ is independent of $\mathrm{i}_{\mathrm{B}}$ Whether $i_{B}$ equals $150 \mu \mathrm{~A}$ or 1 mA still gives approximately $\mathrm{V}_{\mathrm{CE}}=0.2 \mathrm{~V}$ )

When the input to the inverter in "high", it is important that the base current be large enough to drive the transistor to saturation.

For saturation, $\mathrm{i}_{\mathrm{B}}>\mathrm{i}_{\mathrm{C}} / \beta$,

$$
i_{C}=\frac{V_{C C}-V_{O U T}}{R_{C}}, V_{O U T}=V_{C E}
$$

S2 Spring 200 Lecture 13 C.1.enoi

## Multiple Stages Digital Circuits (loaded circuit)



Until now, we have been ignoring the current coming from the next stage. (no load effect until now)

In the circuit above, when $\mathrm{V}_{\text {out }}$ is "low", $\mathrm{i}_{\text {out }}$ will normally be positive. Since $\mathrm{i}_{\text {out }}$ is not zero, we need to take it into account in our load calculation. By KCL:
$i_{C}=\frac{V_{C C}-V_{C E(S A T)}}{\beta R_{C}}+i_{O U T} \Rightarrow i_{B}>\frac{i_{C}}{\beta}=\frac{V_{C C}-V_{C E(S A T)}}{\beta R_{C}}+\frac{i_{O U T}}{\beta}$
$\therefore$ Larger $\mathrm{i}_{\mathrm{B}}$ must be supplied when load currents are expected.
$i_{B}>\frac{i_{C}}{\beta}=\frac{V_{C C}-V_{C E}}{\beta R_{C}}$
$\mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CE} \text { (SAT) }}$
$i_{B}>\frac{i_{C}}{\beta}=\frac{V_{C C}-V_{C E(S A T)}}{\beta R_{C}}$

## DTL (Diode Transistor Logic Circuits)

NAND DTL circuit


To simplify the analysis, we will approx. the voltage of a forward biased pn junction to be 0.7 V .
Since we don't know which diode is forward bias/reverse bias, let's start by guessing the result, then check for consistency.

Let $\mathrm{v}_{\mathrm{A}}$ and $\mathrm{v}_{\mathrm{B}}=0 \mathrm{~V}, \mathrm{D}_{\mathrm{A}}$ and $\mathrm{D}_{\mathrm{B}}$ are forward biased $\Rightarrow \mathrm{V}_{\mathrm{x}}=0.7 \mathrm{~V}$
Since it takes $\mathrm{V}_{\mathrm{x}}$ to be 2.1 V to turns on $\mathrm{D}_{1}, \mathrm{D}_{2}$, and $\mathrm{T}_{1} \Rightarrow$
$\mathrm{D}_{1}, \mathrm{D}_{2}$, and $\mathrm{T}_{1}$ are cutoff $\Rightarrow \mathrm{i}_{\mathrm{B}}=0 . \Rightarrow \mathrm{V}_{\text {output }}=\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
$D_{A}, D_{B}$ on, $D_{1}, D_{2}$, and $T_{1}$ off, consistency check out ok.

## DTL NAND gate summary

Output corresponding to the various inputs for the DTL NAND gate.

|  |  | Conduction? |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: | :--- | :--- |
|  | $\boldsymbol{v}_{\boldsymbol{A}}$ | $\boldsymbol{v}_{\boldsymbol{B}}$ | $\boldsymbol{v}_{\boldsymbol{X}}$ | $\boldsymbol{D}_{\boldsymbol{A}}$ | $\boldsymbol{D}_{\boldsymbol{B}}$ | $\boldsymbol{D}_{\mathbf{1}} \boldsymbol{D}_{\mathbf{2}} \boldsymbol{T}_{\mathbf{1}}$ |
| 0 | 0 | 0.7 | Yes | Yes | $\boldsymbol{v}_{\boldsymbol{F}}$ |  |
| 0 | 0.3 | 0.7 | Yes | No | No | 5 |
| 0.2 | 4.5 | 0.9 | Yes | No | No | 5 |
| 4.8 | 4.1 | 2.1 | No | No | Yes | 0.2 |


|  | $v_{\text {A }}$ | $v_{B}$ | $v_{F}$ | A | B | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NAND <br> truth table | Low | Low | High | 0 | 0 | 1 |
|  | Low | High | High | 0 | 1 | 1 |
|  | High | Low | High | 1 | 0 | 1 |
|  | High | High | Low | 1 | 1 | 0 |

## TTL NAND gate (different cases)

Case 1: one or more input are "low", output is high.
$\mathrm{E}_{1}$ is connected to low,
$\mathrm{E}_{2}$ and $\mathrm{E}_{3}$ are connected to high
Since $E_{1}$ is connected to low
$\mathrm{T}_{1}$ is on, $\mathrm{V}_{\mathrm{x}}=0.7 \mathrm{~V}$,
$i_{B 1} \cong\left(V_{C C}-0.7\right) / R_{1}$


Notice that $\mathrm{i}_{\mathrm{C} 1}$ is flowing into $\mathrm{T}_{1}$ and flowing from the base of $\mathrm{T}_{2}$. This means $T_{2}(n p n)$ is reverse biased. Since reverse bias current are small, $\mathrm{i}_{\mathrm{B}_{1}} \gg \mathrm{i}_{\mathrm{C}_{1} 1} / \beta \Rightarrow \mathrm{T}_{1}$ is saturated $\Rightarrow \mathrm{V}_{\mathrm{CE1}}=\mathrm{V}_{\mathrm{CE}(\mathrm{SAT})} \cong 0.2 \mathrm{~V} . \Rightarrow \mathrm{V}_{\mathrm{Y}} \cong 0.2 \mathrm{~V}$ ( $T_{2}$ and $T_{3}$ are performing the same function as $D_{1}, D_{2}, T_{1}$ in DTL) $V_{Y}$ is smaller than 1.4 V , the required voltage to activate $T_{2}$ and $T_{3} \Rightarrow$ $\mathrm{T}_{2}$ and $\mathrm{T}_{3}$ are turn off $\Rightarrow \mathrm{V}_{\mathrm{F}}=\mathrm{V}_{\mathrm{Cc}}$.
$\therefore$ one or more input are "low", output is high.

- Fundamental circuit of digital logic is the transistor switch, or inverter.
- Saturating bipolar transistor switches are used in diode-transistor logic (DTL) and transistor-transistor logic (TTL). The transistor acts as a switch that connects or disconnect the collector and the emitter. The switch is closed when sufficient base current is applied to saturate the transistor.
- Sufficient base current must be applied to BJT inverters to guarantee saturation under all load conditions.
- Logic family in different forms known as logic families.
- Blocks in the same family are compatible and can be interconnected.
- The TTL family and CMOS/BiCMOS family are the frequent used logic families.

