C. T. Choi

NODE/LOOP ANALYSIS

4

CURRENT-VOLTAGE CHARACTERISTICS OF VOLTAGE & CURRENT SOURCES

Describe a two-terminal circuit element by plotting current vs. voltage

C. T. Choi

BRANCH AND NODE VOLTAGES

The voltage across a circuit element is defined as the difference between the node voltages at its terminals

Specifying node voltages: Use one node as the implicit reference (the "common" node ... attach special symbol to label it)

Now single subscripts can label voltages:

```
e.g., v_{\rm b} means v_{\rm b} - v_{\rm e}, v_{\rm a} means v_{\rm a} - v_{\rm e}, etc.
```

EECS 42 Winter 2000 Lecture 4

C.T.Choi

5

KIRCHHOFF'S VOLTAGE LAW (KVL)

The algebraic sum of the "voltage drops" around any "closed loop" is zero.

Why? We must return to the same potential (conservation of energy).

Voltage drop \rightarrow defined as the branch voltage if the + sign is encountered first; it is (-) the branch voltage if the - sign is encountered first ... important bookkeeping

Closed loop: Path beginning and ending on the same node

EECS 42 Winter 2000 Lecture 4

EECS 42 Winter 2000 Lecture 4

C.T.Choi

6

ALTERNATIVE STATEMENTS OF KIRCHHOFF'S VOLTAGE LAW

1 For any node sequence A, B, C, D, ..., M around a closed path, the voltage drop from A to M is given by

 $v_{AM} = v_{AB} + v_{BC} + v_{CD} + \dots + v_{LM}$

2 For all pairs of nodes i and j, the voltage drop from i to j is

 $v_{ii} = v_i - v_j$

where the node voltages are measured with respect to the common node.

7

C.T.Choi

Node Analysis

EECS 42 Winter 2000 Lecture 4

Node Analysis

Goals: Solve all unknown node voltages.

How?

•By writing equations expressing Kirchhoff's current law (KCL) for each node where the voltage is unknown.

10

EECS 42 Winter 2000 Lecture 4

C.T.Choi

Node Analysis

$$\frac{V_0 - V_B}{R_1} + \frac{V_C - V_B}{R_2} + \frac{-V_B}{R_4} = 0 \qquad \qquad \frac{V_B - V_C}{R_1} + \frac{-V_C}{R_3} = 0$$

2 equations and 2 unknowns. Can be solved simultaneously for $V_B \& V_C$

$$V_{C} = V_{0} \cdot \frac{R_{3}R_{4}}{R_{1}R_{2} + R_{1}R_{3} + R_{1}R_{4} + R_{2}R_{4} + R_{3}R_{4}} \qquad V_{B} = f(V_{0})$$

$$V_{B} = V_{0} \cdot \frac{R_{4}(R_{2} + R_{3})}{R_{1}R_{2} + R_{1}R_{3} + R_{1}R_{4} + R_{2}R_{4} + R_{3}R_{4}} \qquad V_{C} = f(V_{0})$$

$$V_{C} = f(V_{0})$$

$$I_1 = \frac{V_A - V_B}{R_1} = \frac{V_0 - V_B}{R_1} \qquad I_2 = \frac{V_B - V_C}{R_2} \qquad I_3 = \frac{V_C - V_D}{R_3} = \frac{V_C}{R_3} \qquad I_4 = \frac{V_B - V_D}{R_4} = \frac{V_B}{R_4}$$

11

9

C. T. Choi

Node Analysis (nodal analysis)

- 1 Choose a Reference Node \pm
- 2 Define unknown node voltages (those not fixed by voltage sources)
- 3 Write KCL at each unknown node, expressing current in terms of the node voltages (using the constitutive relationships of branch elements: **for resistor element use Ohm's law**)
- 4 Solve the set of equations (N equations for N unknown node voltages)

EECS 42 Winter 2000 Lecture 4

C.T.Choi

13

Node Analysis (special case (cont.))

=> sum of all current entering this "supernode" or the dashed line is zero:

$$\frac{V_1 - V_A}{R_1} + \frac{0 - V_A}{R_2} + \frac{0 - V_B}{R_3} = 0$$

$$V_A + V_2 = V_B$$
(from - to +) vields V_B ,

- Remember N equations and N unknowns.
- In this case, 2 equations and 2 unknowns would allow us to solve for the 2 unknowns simultaneously.

 I_1

EECS 42 Winter 2000 Lecture 4

EECS 42 Winter 2000 Lecture 4

voltage source.

Find V_0 in the circuit on the left.

First, simplify the circuit by replacing the series combination of R_1 and R_2 by R_4 ($R_4 = R_1 + R_2$)

Node Analysis (special case)

 v_1

For the circuit on the left, we can not apply KCL at node A using

the normal approach. We can not write the current flowing from

Circumvent this by drawing a dashed line around the 2 nodes as shown in the circuit on the right. Consider it as a "supernode",

A to B, thus, can not find the sum of current entering node A.

Similar problem if we apply KCL at node B.

When 2 nodes (voltages are unknown) are connected by a

Now there is only one unknown node voltage left : $V_A = V_0$

Apply KCL at node A (summing all the current entering node A):

$$+\frac{0-V_{A}}{R_{3}}+\frac{0-V_{A}}{R_{4}}=0 \qquad One \ equation \ and \ one \ unknown \\ V_{A}=I_{1}\frac{R_{3}R_{4}}{R_{3}+R_{4}}=I_{1}\frac{R_{3}(R_{1}+R_{2})}{R_{3}+(R_{1}+R_{2})}$$

15

16

14

C T Choi

C T Choi

EXAMPLE OF NODE ANALYSIS

Define the node voltages (except reference node and the one set by the voltage source); write down set of equations for node voltages V_a and V_h

EECS 42 Winter 2000 Lecture 4

What happen if some device is short circuit/open circuit in our house?

Short circuit within the house => draw a lot of current=> fuse would be melted at higher than a certain temperature (or current) => The electric system in your house becomes open circuit (disconnected). (alternate, a breaker can be switch off during a short circuit). Could also happen if the electric load in the house is too high, ie. extension cord is used by several electric appliance at the same time.

- first by using KCL, then current is found by using the V-I characteristic of the circuit element (for resistor element: Ohm's law).
- In loop analysis, current is obtained first by KVL, then voltage is found by using the V-I characteristic (for resistor element: Ohm's law).

 $R_4 \gtrsim$

In loop analysis, one defines special current known as mesh currents. In this example, 2 mesh currents is defined, I_1 and I_2

₹ R₃

C.T.Choi

EECS 42 Winter 2000 Lecture 4

Loop Analysis

Assume I_1 and I_2 are defined as the mesh current. Notice the mesh current go thru the whole loop. R_4 has 2 mesh currents go thru it.

The voltage drop from A to B across R_1 : I_1R_1

The voltage drop from B to D across R4: $(I_1 - I_2)R_4$

Apply KVL in the loop ABDA:

$$I_1R_1 + (I_1 - I_2)R_4 - V_0 = 0$$

Apply KVL in the loop BCDB:

 $I_2 R_2 + I_2 R_3 + (I_2 - I_1) R_4 = 0$

22

C.T.Choi

21

Loop Analysis

Loop Analysis (Mesh Analysis)

A lot of freedom, except that every branch of the circuit have

The value of the mesh currents are now the unknown to be solved for. The number of equations = The number of unknown

The equations are obtained by applying Kirchhoff Voltage law

(Number of nodes) + 1

mesh current

The number of mesh currents = (Number of branches) -

In this case, there are 4 nodes, 5 branches.

at least one mesh current flowing thru it.

of mesh = 5 - 4 + 1 = 2

How to define mesh current?

on the loops of the mesh currents.

The individual branch current and voltage can be found from I_1 and I_2 .

$$V_{CD} = V_C = I_2 R_3 = V_0 \frac{R_4 R_3}{R_1 R_2 + R_1 R_3 + R_1 R_4 + R_2 R_4 + R_3 R_4}$$

EECS 42 Winter 2000 Lecture 4

C.T.Choi

Loop Analysis

Need as many loop equations as there are unknown mesh current.

In this case, I_1 is known because it is equal to 20mA. So there is only one mesh current as unknown in this circuit.

C.T.Choi

Special case when 2 unknown mesh currents both pass thru a current source like the circuit on the left.

It is impossible to write KVL for the path ABDA because one cannot write the voltage drop across a current source as a function of the current thru it.

To circumvent this, we use I_3 and I_4 as mesh currents as shown on the right circuit.

Notice: $I_3 = -I_0$, so the only unknown mesh current is I_4 . And I_4 can be found by using the normal KVL approach. 25

Loop Analysis (mesh analysis)

- 1. Select the **proper number of mesh current** such that at least one mesh current passes through each branch.
- 2. (a) Express voltage drop across each element as functions of known and unknown mesh currents,
 - (b) write equations stating that the sum of the voltage drop around closed path are zero. (**KVL**)
- 3. **Solve equations** obtained in step 2 simultaneously for unknown mesh current.
- 4. Obtain branch currents from the mesh current found in in step 3 and obtain desired node voltages from branch currents and the I-V relationship of the branches.

EECS 42 Winter 2000 Lecture 4

C. T. Choi

ANOTHER NOTE ON SUBSCRIPTS

Although the text does not follow this convention, a simple convention exists to identify fixed voltage and current sources. A fixed voltage or current source typically is denoted by double subscripts, e.g., V_{CC} , V_{DD} , etc., and is all capitals. Thus:

- V_{SS} Fixed voltage (e.g., 5V source)
- V_s DC voltage (may be an unknown)
- v_s Time-varying voltage
- I_{BB} Fixed current (e.g., 1µA source)
- i_b Time-varying current
- dc current

Thus we are certain that all-cap double-subscripted symbols are fixed values. Single-subscripted symbols will be variables when double subscripted symbols are present. Otherwise we have to figure out the symbol type from instructions or context.

EECS 42 Winter 2000 Lecture 4

C.T.Choi

26

RESISTORS IN SERIES

(Here its more convenient to use KVL than node analysis)

Circuit with several resistors in series - Can we find an equivalent resistance?

- KCL tells us same current flows through every resistor
- KVL tells us $I \cdot R_1 + I \cdot R_2 + I \cdot R_3 + I \cdot R_4 = V_{SS}$
- Clearly, $I = V_{SS}/(R_1 + R_2 + R_3 + R_4)$

 $\ensuremath{\mathscr{T}}$ Thus, equivalent resistance of resistors in series is the simple sum

C.T.Choi

EECS 42 Winter 2000 Lecture 4

C.T.Choi

GENERALIZED PARALLEL RESISTORS

What single resistance R_{eq} is equivalent to three resistors in parallel?

Note the simplicity if we use conductance instead of resistance

ADD CONDUCTANCES IN PARALLEL

$$G_1 \equiv \frac{1}{R_1}$$
, etc., $G_{eq} \equiv \frac{1}{R_{eq}}$

Then, $G_{eq} = G_1 + G_2 + G_3$

REAL VOLTMETERS Concept of "Loading" as Application of Parallel Resistors

How is voltage measured? Modern answer: Digital multimeter (DMM)

Problem: Connecting leads from voltmeter across two nodes changes the circuit. The voltmeter is characterized by how much current it draws at a given voltage \rightarrow "voltmeter input resistance," R_{in}. Typical value: $10 M\Omega$

Example: $V_{SS} = 10V$, $R_2 = 100K$, $R_1 = 900K \Rightarrow V_2 = 1V$

But if
$$R_{in} = 10M, V'_2 = 0.991V$$
, a 1% error

EECS 42 Winter 2000 Lecture 4

C.T.Choi

30

IDENTIFYING SERIES AND PARALLEL COMBINATIONS

Use series/parallel equivalents to simplify a circuit before starting KVL/KCL

C.T.Choi

IDENTIFYING SERIES AND PARALLEL COMBINATIONS (cont.)

Some circuits *must* be analyzed (not amenable to simple inspection)

EECS 42 Winter 2000 Lecture 4

C.T.Choi

35

IDEAL AND NON-IDEAL METERS

MEASURING CURRENT

Insert DMM (in current measurement mode) into circuit. But ammeters disturb the circuit. (Note: Ammeters are characterized by their "ammeter input resistance," R_{in}. Ideally this should be very low. Typical value (in mA range) 1 Ω .)

Potential measurement error due to non-zero input resistance:

