EECS 42 Winter 2000 Lecture 4

NODE/LOOP ANALYSIS

Lecture 3 review:

* Voltage and current sources
 Series and parallel resistors

Today:

¢ Nodal analysis

« Loop analysis

« Series & parallel resistors (revisit & generalize)

* Real voltmeters

C. T. Choi
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CURRENT-VOLTAGE CHARACTERISTICS OF VOLTAGE &
CURRENT SOURCES

Describe a two-terminal circuit element by plotting current vs. voltage

S

Ideal voltage source —©@ Ideal current source
+
We assqmed . o . y Weassume
v . gg‘::;gs: i £ ilgns sol unassociated signs so i
inal comes out of + terminal
termina o

absorbing power  releasing power
i

releasing power‘ J; A J;

|

v |
* Real ammeters ]bsorbing power v
charging)
2
Resistors in Parallel and Series continue
o e In Parallel —>
A ———C l
+ R 'D
v c Apply KCL at node D * _ .
- N i= ipti, = (VIR,-VIR,) v g | w3 |
B = v (1/R;-1/R,) T
o =V (R, + R)/(RRy) L
Series Parallel = V/[(RR)/(R, + Ry)] o
=v/R

In series:

v=iR+iR, = i (R;+R,) = i (R), where R=R,+R,

R =[(R;R,)/(R, + R;)], where R; is in parallel with R,
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BRANCH AND NODE VOLTAGES

The voltage across a circuit element is defined as the difference
between the node voltages at its terminals

Vo =V4 TV,

Ve =0 (since it's the
reference)

e <+«—selectas ref. [J “ground”

Specifying node voltages: Use one node as the implicit reference
(the “common” node ... attach special symbol to label it)

Now single subscripts can label voltages:

‘ e.g., V, means v, — v, vV, means v, — V,, etc. ‘
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KIRCHHOFF'S VOLTAGE LAW (KVL)

The algebraic sum of the “voltage drops” around any “closed loop” is zero.

Why? We must return to the same potential (conservation of energy).

Voltage drop - defined as the branch voltage if the + sign is encountered first;
it is (-) the branch voltage if the — sign is encountered first ... important
bookkeeping

Path gy + Path
: v: | “drop” v, “rise” or “step up”
* (negative drop)

v

Closed loop: Path beginning and ending on the same node
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KVL EXAMPLE

Examples of
Three closed paths:

0, O, O

Note that:
V, =V, -V,

V3 =V -V

Path 1: Path 2: Path 3:
—V,tvy+tvy =0 -Vp—v3+v,.=0
1
Va = Vp
YEP!

vV, tvy—v3+v. =0
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ALTERNATIVE STATEMENTS OF KIRCHHOFF'S
VOLTAGE LAW

1 For any node sequence A, B, C, D, ..., M around a closed path, the
voltage drop from A to M is given by

vam =vaB tvpctvep -t vim

2 For all pairs of nodes i and j, the voltage drop fromitojis

Vi ViV

ij i
where the node voltages are measured with respect to
the common node.
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Node Analysis

A B C
*The state of a circuit is completely " -
known if the voltage at all nodes B . .
& and the current thru all the : i
branches is known. 5
*One of the node voltages can be ®
arbitrarily set to zero. N . .

E;

*The total unknowns to be solved

for is equal to the number of & E Ey
branches plus the number of nodes, J
minus one. a

—_

(b)
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Node Analysis

Goals: Solve all unknown node voltages.

How?
*By writing equations expressing Kirchhoff’s current law (KCL)
for each node where the voltage is unknown.
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Node Analysis (cont.)

5 circuit elements - 4 resistors, 1 voltage source.
4 nodes.:
2 unknown voltages: vg,, v A
2 known voltages:
1 reference voltage: v,
1 voltage source: v,=v, VOC

4 branch currents: 1,, 1,, I, 1,
(but 1,=1;) => 3 unknown currents

Apply KCL at node B: Apply KCL at node C:

VO_VB+VC_VB+VD_VB:0 VB_VC+VD_VC:0
Rl R7 R4 R2 R3

But y, =0 inboth cases.
11
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Node Analysis
VO_VB+VC_VB+_VB:0 VB_VC+_VC:0
RI R2 R4 Rl R3

2 equations and 2 unknowns.
Can be solved simultaneously for Vg & V-

— R3R4
Ve =V, 0O
R\Ry + R\R; + RiRy + RyR, + R3R, Ve =f(Vy)O
_ R (R, +R;) Ve = f(V)D
Vg =V, 0
R\R, +R\R; + R|Ry + R,R, + R3R, if 0, =0
l
What about the 4 branch currents? %/B =V-=0
Apply Ohm’s law
I_VA_VB_VO_VB I_VB_VC I_VC_VD_VLI_M_V;B
""" R R 27 R TR, "R, ' R, R
1 1 2 3 3 4 4

12
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Node Analysis (nodal analysis)

1 Choose a Reference Node ==

2 Define unknown node voltages (those not fixed by
voltage sources)

3 Write KCL at each unknown node, expressing current
in terms of the node voltages (using the constitutive
relationships of branch elements: for resistor element
use Ohm’s law )

4 Solve the set of equations (N equations for N unknown
node voltages)
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Node Analysis (special case)

When 2 nodes (voltages are unknown) are connected by a
voltage source. S

-
; v,

Ry A A = A+
AAA
VWA
N
. -
s
1% RS b
O 2 $

For the circuit on the left, we can not apply KCL at node A using
the normal approach. We can not write the current flowing from
A to B, thus, can not find the sum of current entering node A.
Similar problem if we apply KCL at node B.

.|}_<

Circumvent this by drawing a dashed line around the 2 nodes as
shown in the circuit on the right. Consider it as a “supernode”,
and apply to same KCL on this “supernode”.

EECS 42 Winter 2000 Lecture 4 C. T. Choi

Node Analysis (special case (cont.))

=> sum of all current entering this “supernode” or the dashed line
is zero: J—

s V; ~
Ry A = A

Vi 0=V, 0-Vp _ |

Vi [P

R, R, R, ! 3

Remember V, gain V,
(from - to +) yields V.

.||_4

* Remember N equations and N unknowns.
* In this case, 2 equations and 2 unknowns would allow us
to solve for the 2 unknowns simultaneously.
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Node Analysis (example)

A A

Oy 4 0 |+
IIC) Rs B LH 11( R3 ‘>\;,

ﬁ’DJ7 ‘OJ
L L

Ny

Find V/, in the circuit on the left.

First, simplify the circuit by replacing the series combination
of R,and R, by R, (R,=R; +R))

Now there is only one unknown node voltage left : V, =V,

Apply KCL at node A (summing all the current entering node A):

0=V, 0=V, _ One equation and one unknown

R R — R3H4 — RS(RI RZ)
3 4 VA = [1 =1
RS R4 RS (1 zl R2)

I+
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EXAMPLE OF NODE ANALYSIS

Define the node voltages (except reference node and the one set by
the voltage source); write down set of equations for node voltages V,
and V,

node voltage known V,

N
Wv *
L

— reference node

Apply KCL:
Va_Vl_FVa_Vb_FQ:O
R, R, R,
V-V v You can solve for Vg Vp-
b a b _ —
I =0 What if we used different ref node?
R3 R4 17
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Closed/Open circuit

Short circuit A and B means R; =0
(current can go thru, usually a lot of
current)

Open circuit A and B means R; = «
(no current can go thru)

Why is electric window not a “safe” option in a car?

R

What happen if some device is
short circuit/open circuit in our house?

fuse

Power from
outside the house

O

House

Short circuit within the house => draw a lot of current=> fuse
would be melted at higher than a certain temperature (or
current) => The electric system in your house becomes open
circuit (disconnected). (alternate, a breaker can be switch off
during a short circuit). Could also happen if the electric load
in the house is too high, ie. extension cord is used by

several electric appliance at the same time.
19
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Loop Analysis

* In node analysis (or nodal analysis), voltage is obtained
first by using KCL, then current is found by using the V-1
characteristic of the circuit element (for resistor element:
Ohm’s law).

* In loop analysis, current is obtained first by KVL, then
voltage is found by using the V-I characteristic (for resistor
element: Ohm’s law).

In loop analysis, one defines
special current known as
mesh currents. Vo
In this example, 2 mesh
currents is defined, 1, and I,

A Ry B Rz c

R;

20
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Loop Analysis (Mesh Analysis)

The number of mesh currents = (Number of branches) -
(Number of nodes) + 1

In this case, there are 4 nodes, 5 branches. ;.. 5
#ofmesh=5-4+1=2 % N T L

AL TN
How to define mesh current?

A lot of freedom, except that every branch of the circuit have
at least one mesh current flowing thru it.

The value of the mesh currents are now the unknown to be
solved for. The number of equations = The number of unknown
mesh current

The equations are obtained by applying Kirchhoff Voltage law
on the loops of the mesh currents.
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Loop Analysis

Assume [, and |, are defined W
as the mesh current. Notice CTN L It

the mesh current go thru the ®) ‘&I> 2 Q $F
whole loop. R, has 2 mesh
currents go thru it. =

VAR
1

The voltage drop from A to B

across R;: IR, Apply KVL in the loop BCDB:

The voltage drop from B to D IRy + )Ry + (I, = 1))Ry =0
across R4: (I,-1,)R,
Apply KVL in the loop ABDA:

LR+ —1))Ry =V =0
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Loop Analysis

Solving these 2 equations simultaneously:

I =V Ry +R; +R, A
'"""RR,+RR,+RR, +R,R, +R;R,

Vo
v R, C

1, =

The individual branch current and voltage can be found
from 1, and I,.
R,R,

Vep =Ve = 1Ry =V,
b TC TSmO R R, + R Ry +RR, + RyR, + RyR,
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Loop Analysis

Need as many loop equations as there are unknown mesh
current.

In this case, 1, is known because it is equal to 20mA.

So there is only one mesh current as unknown in this
circuit. 6V

5
20 mAQ) 1 Ry % Q < R

T
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Loop Analysis (special case)

Special case when 2 unknown mesh currents both pass thru
a current source like the circuit on the left.

A Ry B R c

O )8 )

It is impossible to write KVL for the path ABDA because one
cannot write the voltage drop across a current source as a
function of the current thru it.

To circumvent this, we use I; and I, as mesh currents as
shown on the right circuit.

Notice: I;=-1,, so the only unknown mesh currentis I,
And I, can be found by using the normal KVL approach. 25
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Loop Analysis (mesh analysis)

1. Select the proper number of mesh current  such that at least
one mesh current passes through each branch.
2. (a) Express voltage drop across each element as functions
of known and unknown mesh currents
(b) write equations stating that the sum of the voltage drop
around closed path are zero. (KVL)
3. Solve equations obtained in step 2 simultaneously for
unknown mesh current.
4. Obtain branch currents from the mesh current found in
in step 3 and obtain desired node voltages from branch
currents and the I-V relationship of the branches.
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ANOTHER NOTE ON SUBSCRIPTS

Although the text does not follow this convention, a simple
convention exists to identify fixed voltage and current sources. A
fixed voltage or current source typically is denoted by double
subscripts, e.g., V., Vpp, €tc., and is all capitals. Thus:

Vgg Fixed voltage (e.g., 5V source)

Vi DC voltage (may be an unknown)
Vg Time-varying voltage

lsg Fixed current (e.g., 14A source)
i Time-varying current

Iy dc current

Thus we are certain that all-cap double-subscripted symbols are
fixed values. Single-subscripted symbols will be variables when
double subscripted symbols are present. Otherwise we have to
figure out the symbol type from instructions or context.
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RESISTORS IN SERIES

(Here its more convenient to use KVL than node analysis)

Circuit with several resistors in series — Can we find an equivalent resistance?

» KCL tells us same current
flows through every resistor

o KVL tells us
IR, +IR, +IR; +IR, = Vg

* Clearly,
I=Vg/(R; +R, +R5 +Ry)

@ Thus, equivalent resistance of resistors in series is the simple sum
28
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RESISTORS IN PARALLEL _ REAL VO_LTI\_/IETERS _
Concept of “Loading” as Application of Parallel Resistors

VX
° ) R . )
1 Select Reference Node How is voltage measured? Modern answer: Digital multimeter (DMM)
. ’ I i lz] =r Problem: Connecting leads from voltmeter across two nodes changes
2 Define unknown node voltages ‘s R ? the circuit. The voltmeter is characterized by how much current it
draws at a given voltage - “voltmeter input resistance,” R;,. Typical
value: 10 MQ
N 1 " "
ote: I, =1, +1,, i.e, R, R,
ISS:VX +V7X 0 VX:Issgli :ISSB& 1 N
Ry R 1,1 Ri+R, v C) = v, CD = ;
Rl R2 ss\| — R, V. Ss\_ - R Rin V2
_ R1R2 »—_ L B
RESULT 1 EQUIVALENT RESISTANCE: Ry =R;[[Ry = ="
1tk
RESULT 2 CURRENT DIVIDER: | _ Vx « Ry v, :VSS%E V) = Vs & R”2R|| RinR E
17 SsS + @2 in TRy
R, R, +R, L2 mn
I :& T x R, Example: Vgg =10V, R, =100K,R; =900K 00 V, =1V
2 STy L .
R, R, +R, . Butif R;, =10M, V5 =0.991V,a 1% error 30
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IDENTIFYING SERIES AND PARALLEL COMBINATIONS
GENERALIZED PARALLEL RESISTORS Use series/parallel equivalents to simplify a circuit before starting KVL/KCL
What single resistance R, is equivalent to three resistors in parallel?
. R Rl = Rz =10K
Ps 1 —*1 R3 —> c
rp Lt R, R3R3=20K
\Y% R R R, «
=R =R =R = Vv =R, R, =5=5K
. — R =10K
vV V V \"% -—
[=—+—+—=— DRquR1”R2HR3:; - . parallel
R, R, R, R, 1,11
R; Ry Rj

—>
Note the simplicity if we use conductance instead of resistance

i 1 R Ry
Gy =—,etc.,G,, E——
7R, «TR

eq ‘

Ry ?

Rx =(R; +Ry)[[R; +(Ry +R5) [ Rg
=15K

Then,Geg =G1+G, +G3| | ADD CONDUCTANCES IN PARALLEL | .
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IDENTIFYING SERIES AND PARALLEL COMBINATIONS
(cont.)

Some circuits must be analyzed (not amenable to simple inspection)
R, and R, are not in ||
—=

R; and Rs are not
in series

Special cases:
R;=0 OR Ry=
Example: R; =00 R, || Ry R, || Rginseries;  Rgq =Ry |[R; + R, || Rs

OR IF Ry=w [ (R +Rg) || (R + Ry)
33
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MEASURING CURRENT
Insert DMM (in current measurement mode) into circuit. But ammeters
disturb the circuit. (Note: Ammeters are characterized by their “ammeter

input resistance,” R;,.. Ideally this should be very low. Typical value (in
mA range) 1Q.)

Potential measurement error due to non-zero input resistance:

| —» WCmeasr
/ammeter
Ry R ,
" " Rn
vV _ _
R R
undisturbed circuit with ammeter
— Vl 1 — Vl
Ri+R; TR +R, Ry,
ExampleV=1V:R1+R2=1KQ ,Rin=1Q
_ _ 1 0
1=1mA » Tineas = 3,75 D099 mA (0.1% error) “
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IDEAL AND NON-IDEAL METERS

DMM DMM
volts amps
O o, IC s .
IDEAL IDEAL
DMM DMM
volts amps
RiQ RIQ
..... c ...t c

MODEL OF REAL
DIGITAL VOLTMETER

Note: R,, may depend on range

DIGITAL AMMETER
Note: R;, usually depends on
current range

R,, typically > 10 MQ R,, typically <1 Q

35




